1,821 research outputs found

    Magnetic and Transport Properties in CoSr2Y1−xCaxCu2O7CoSr_2Y_{1-x}Ca_xCu_2O_7 (xx=0∼\sim0.4)

    Full text link
    Magnetic and transport properties of CoSr2Y1−xCaxCu2O7Co Sr_2 Y_{1-x} Ca_x Cu_2 O_7 (x=0∼0.4x=0 \sim 0.4) system have been investigated. A broad maximum in M(T) curve, indicative of low-dimensional antiferromagnetic ordering originated from CoO1+δCoO_{1+\delta} layers, is observed in Ca-free sample. With increasing Ca doping level up to 0.2, the M(T) curve remains almost unchanged, while resistivity is reduced by three orders. Higher Ca doping level leads to a drastic change of magnetic properties. In comparison with the samples with x=0.0∼0.2x=0.0 \sim 0.2, the temperature corresponding to the maximum of M(T) is much lowered for the sample xx=0.3. The sample xx=0.4 shows a small kink instead of a broad maximum and a weak ferromagnetic feature. The electrical transport behavior is found to be closely related to magnetic properties for the sample xx=0.2, 0.25, 0.3, 0.4. It suggests that CoO1+δCoO_{1+\delta} layers are involved in charge transport in addition to conducting CuO2CuO_2 planes to interpret the correlation between magnetism and charge transport. X-ray photoelectron spectroscopy studies give an additional evidence of the the transfer of the holes into the CoO1+δCoO_{1+\delta} charge reservoir

    Ferromagnetism and large negative magnetoresistance in Pb doped Bi-Sr-Co-O misfit-layer compound

    Full text link
    Ferromagnetism and accompanying large negative magnetoresistance in Pb-substituted Bi-Sr-Co-O misfit-layer compound are investigated in detail. Recent structural analysis of (Bi,Pb)2{}_2Sr3{}_{3}Co2{}_2O9{}_9, which has been believed to be a Co analogue of Bi2{}_2Sr2{}_2CaCu2{}_2O8+δ{}_{8+\delta}, revealed that it has a more complex structure including a CoO2{}_2 hexagonal layer [T. Yamamoto {\it et al.}, Jpn. J. Appl. Phys. {\bf 39} (2000) L747]. Pb substitution for Bi not only introduces holes into the conducting CoO2{}_2 layers but also creates a certain amount of localized spins. Ferromagnetic transition appears at TT = 3.2 K with small spontaneous magnetization along the cc axis, and around the transition temperature large and anisotropic negative magnetoresistance was observed. This compound is the first example which shows ferromagnetic long-range order in a two-dimensional metallic hexagnonal CoO2{}_2 layer.Comment: 8 pages including eps figures. To be published in J. Phys. Soc. Jp

    Magneto-optical Kerr effect in Eu1−xCaxB6Eu_{1-x}Ca_{x}B_{6}

    Full text link
    We have measured the magneto-optical Kerr rotation of ferromagnetic Eu1−xCaxB6Eu_{1-x}Ca_{x}B_{6} with x=0.2 and 0.4, as well as of YbB6YbB_{6} serving as the non-magnetic reference material. As previously for EuB6EuB_{6}, we could identify a feature at 1 eVeV in the Kerr response which is related with electronic transitions involving the localized 4f electron states. The absence of this feature in the data for YbB6YbB_{6} confirms the relevance of the partially occupied 4f states in shaping the magneto-optical features of EuEu-based hexaborides. Disorder by CaCa-doping broadens the itinerant charge carrier contribution to the magneto-optical spectra

    Doubling of the bands in overdoped Bi2Sr2CaCu2O8-probable evidence for c-axis bilayer coupling

    Full text link
    We present high resolution ARPES data of the bilayer superconductor Bi2Sr2CaCu2O8 (Bi2212) showing a clear doubling of the near EF bands. This splitting approaches zero along the (0,0)-(pi,pi) nodal line and is not observed in single layer Bi2Sr2CuO6 (Bi2201), suggesting that the splitting is due to the long sought after bilayer splitting effect. The splitting has a magnitude of approximately 75 meV near the middle of the zone, extrapolating to about 100 meV near the (pi,0) poin

    Large, high quality single-crystals of the new Topological Kondo Insulator, SmB6

    Get PDF
    SmB6 has recently been predicted to be a Topological Kondo Insulator, the first strongly correlated heavy fermion material to exhibit topological surface states. High quality crystals are necessary to investigate the topological properties of this material. Single crystal growth of the rare earth hexaboride, SmB6, has been carried out by the floating zone technique using a high power xenon arc lamp image furnace. Large, high quality single-crystals are obtained by this technique. The crystals produced by the floating zone technique are free of contamination from flux materials and have been characterised by resistivity and magnetisation measurements. These crystals are ideally suited for the investigation of both the surface and bulk properties of SmB6

    Two-stage spin-flop transitions in S = 1/2 antiferromagnetic spin chain BaCu_2Si_2O_7

    Full text link
    Two-stage spin-flop transitions are observed the in quasi-one-dimensional antiferromagnet, BaCu2{}_2Si2{}_2O7{}_7. A magnetic field applied along the easy axis induces a spin-flop transition at 2.0 T followed by a second transition at 4.9 T. The magnetic susceptibility indicates the presence of Dzyaloshinskii-Moriya (DM) antisymmetric interactions between the intrachain neighboring spins. We discuss a possible mechanism whereby the geometrical competition between DM and interchain interactions, as discussed for the two-dimensional antiferromagnet La2{}_2CuO4{}_4, causes the two-stage spin-flop transitions.Comment: 5 pages, 3 figures (included), accepted for publication in Phys. Rev. Let

    Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4

    Full text link
    Extensive X-ray and neutron scattering experiments and additional transmission electron microscopy results reveal the partial decomposition of Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically realized during the annealing process required to create a superconducting state. Unlike a typical situation in which a disordered secondary phase results in diffuse powder scattering, a serendipitous match between the in-plane lattice constant of NCCO and the lattice constant of one of the decomposition products, (Nd,Ce)2O3, causes the secondary phase to form an oriented, quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from the secondary phase appear at rational positions (H,K,0) in the reciprocal space of NCCO. Additionally, because of neodymium paramagnetism, the application of a magnetic field increases the low-temperature intensity observed at these positions via neutron scattering. Such effects may mimic the formation of a structural superlattice or the strengthening of antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified through careful and systematic experimentation. For typical reduction conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100 angstromsthick. The presence of the secondary phase should also be taken into account in the analysis of other experiments on NCCO, such as transport measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.

    INTERLAYER COUPLING AND THE METAL-INSULATOR TRANSITION IN Pr-SUBSTITUTED Bi(2)Sr(2)CaCu(2)O(8+y)

    Full text link
    Substitution of rare-earth ions for Ca in Bi2Sr2CaCu2O8+y is known to cause a metal-insulator transition. Using resonant photoemission we study how this chemical substitution affects the electronic structure of the material. For the partial Cu-density of states at E_F and in the region of the valence band we observe no significant difference between a pure superconducting sample and an insulating sample with 60% Pr for Ca. This suggests that the states responsible for superconductivity are predomi- nately O-states. The partial Pr-4f density of states was extracted utilizing the Super- Koster-Kronig Pr 4d-4f resonance. It consists of a single peak at 1.36eV binding energy. The peak shows a strongly assymetric Doniach-Sunjic line- shape indicating the presence of a continuum of electronic states with sharp cut off at E_F even in this insulating sample. This finding excludes a bandgap in the insulating sample and supports the existance of a mobility gap caused by spatial localization of the carriers. The presence of such carriers at the Pr-site, between the CuO_2 planes shows that the electronic structure is not purely 2-dimensional but that there is a finite interlayer coupling. The resonance enhancement of the photoemission cross section, at the Pr-4d threshold, was studied for the Pr-4f and for Cu-states. Both the Pr-4f and the Cu-states show a Fano-like resonance. This resonance of Cu-states with Pr-states is another indication of coupling between the the Pr-states and those in the CuO_2 plane. Because of the statistical distribution of the Pr-ions this coupling leads to a non-periodic potential for the states in the CuO_2 plane which can lead to localization and thus to the observed metal-insulator transition.Comment: Gziped uuencoded postscript file including 7 figures Scheduled for publication in Physical Review B, May 1, 1995

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er≃_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR
    • …
    corecore