2 research outputs found

    Identification of unknown parameters of the dynamic model of mass transfer

    Get PDF
    An iterative algorithm for identifying unknown parameters of a mathematical model based on the Bayesian approach is proposed, which makes it possible to determine the most probable maximum informative estimates of these parameters. The example of the mathematical model of mass transfer dynamics shows the algorithm for finding the most probable and most informative estimate of the vector of unknown parameters, and also an analysis of the sequence of the corresponding steps is given. The results of computational experiments showed a significant dependence of the results of the calculations on the choice of the initial approximation point and slowing down the rate of convergence of the iterative process (and even its divergence) with an unsuccessful choice of the initial approximation. The validity of the obtained results is provided by analytical conclusions, the results of computational experiments, and statistical modeling. The results of computational experiments make it possible to assert that the proposed algorithm has a sufficiently high convergence for a given degree of accuracy and makes it possible to derive not only estimates of point values of mathematical model parameters based on a posteriori analysis, but also confidence intervals of these estimates. At the same time, it should be noted that the results of calculations depend significantly on the choice of the initial approximation point and the slowing of the convergence rate of the iterative process with an unsuccessful choice of the initial approximation. Analytical studies and results of calculations confirm the effectiveness of the proposed identification algorithm, which makes it possible, with the help of active, purposeful experiments, to build more accurate mathematical models. In accordance with the algorithm, a program was developed in the MatLab mathematics package and computational experiments were performed

    Investigation of particle size distribution of grinded amber by electropulse discharges in a liquid medium

    No full text
    The article presents the study results of electropulse grinding of amber in aqueous and alcoholic media at different amounts of supplied energy. Description of the electropulse grinding laboratory installation, the mechanism of the destruction process of amber particles and methods of statistical processing of experimental data are given. It was established that alcohol medium has a greater impact on the efficiency of crushing than water. Thus, under the same conditions of energy supply, in the aqueous medium the weighted average particle size of amber was 601:6±688:9 μm, and in an alcohol medium – 368:0±269:6 μm. In an aqueous medium, the particle size decreased to 1/13.6 of raw sample, and in an alcoholic medium to 1/22.3 of raw sample compared to the initial size of raw amber. We found that in the aqueous medium the ratio of large to small fractions is mainly the same with the coefficient of alignment of particles with a size of 1.09. In an alcoholic medium, this ratio significantly differs, with the coefficient of alignment of amber particles of a size of 1.67 with the amount of supplied energy of 125 kJ
    corecore