11 research outputs found

    Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis

    Get PDF
    Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette–Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment

    Global Gene Expression and Systems Biology Analysis of Bovine Monocyte-Derived Macrophages in Response to In Vitro Challenge with Mycobacterium bovis

    Get PDF
    peer-reviewedBackground Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array. Results Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤0.05). Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1) the inflammatory response; (2) cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3) apoptosis. Conclusions The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in mediating the host response to M. bovis.Science Foundation Ireland (www.sfi.ie) Investigator grants (Nos: SFI/01/F.1/B028 and SFI/08/IN.1/B2038); Department of Agriculture, Fisheries and Food (www.agriculture.ie) Research Stimulus Grant (No: RSF 06 405); European Union Framework 7 (http://cordis.europa.eu/fp7) Project Grant (No: KBBE-211602-MACROSYS); Irish Research Council for Science, Engineering and Technology (IRCSET) funded Bioinformatics and Systems Biology PhD Programme (http://bioinfo-casl.ucd.ie/PhD)

    T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells

    No full text
    T-cell stimulating protein A (TspA) is an immunogenic, T-cell and B-cell stimulating protein of Neisseria meningitidis. Sequence similarity between TspA and FimV, a Pseudomonas aeruginosa protein involved in twitching motility, suggested a link between TspA and type IV pili (Tfp). To determine the role of TspA an isogenic deletion mutant was created. Loss of TspA did not affect twitching motility or piliation indicating that there are functional differences between TspA and FimV. Mutation of tspA led to a significant reduction in adhesion of meningococci to meningothelial and HEp-2 cells, which was not due to a lack of transcription of adjacent genes or pilC1. Other Tfp-mediated phenotypes (i.e. auto-aggregation and transformation competence) were not altered. Our results indicate that the role of TspA in adhesion is unlikely to be directly linked to the function of Tfp. TspA was expressed by all N.meningitidis and Neisseria polysaccharea strains examined but not by Neisseria gonorrhoeae or Neisseria lactamica, although sequences with homology to tspA were present in their genomes. In summary, TspA is a highly conserved antigen that is required for optimal adhesion of meningococci to human cells. © 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltd

    Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with <it>Mycobacterium avium</it> subspecies <it>paratuberculosis</it>

    No full text
    Abstract Mycobacterium avium subspecies paratuberculosis is the causative agent of Johne’s disease, an intestinal disease of ruminants with major economic consequences. Infectious bacilli are phagocytosed by host macrophages upon exposure where they persist, resulting in lengthy subclinical phases of infection that can lead to immunopathology and disease dissemination. Consequently, analysis of the macrophage transcriptome in response to M. avium subsp. paratuberculosis infection can provide valuable insights into the molecular mechanisms that underlie Johne’s disease. Here, we investigate pan-genomic gene expression in bovine monocyte-derived macrophages (MDM) purified from seven age-matched females, in response to in vitro infection with M. avium subsp. paratuberculosis (multiplicity of infection 2:1) at intervals of 2 hours, 6 hours and 24 hours post-infection (hpi). Differentially expressed genes were identified by comparing the transcriptomes of the infected MDM to the non-infected control MDM at each time point (adjusted P-value threshold ≤ 0.10). 1050 differentially expressed unique genes were identified 2 hpi, with 974 and 78 differentially expressed unique genes detected 6 and 24 hpi, respectively. Furthermore, in the infected MDM the number of upregulated genes exceeded the number of downregulated genes at each time point, with the fold-change in expression for the upregulated genes markedly higher than that for the downregulated genes. Inspection and systems biology analysis of the differentially expressed genes revealed an enrichment of genes involved in the inflammatory response, cell signalling pathways and apoptosis. The transcriptional changes associated with cellular signalling and the inflammatory response may reflect different immuno-modulatory mechanisms that underlie host-pathogen interactions during infection.</p

    Principal component analysis for all individual control and <i>M. bovis</i>-challenged MDM at the 2 hour, 6 hour and 24 hour time points.

    No full text
    <p>Principal component (PC) 1 and PC2 are shown (accounting for 23.31% and 17.05% of the total variation, respectively). PCA was performed using data for all genes whose probes passed the data filtering process with Euclidean distance as the distance metric.</p

    Differential gene expression associated with apoptosis 6 hours post-<i>M. bovis</i> challenge.

    No full text
    <p>Genes associated with apoptosis showing differential expression are highlighted in colour. Colour intensity indicates the degree of upregulation (red) or downregulation relative to the control MDM. Grey shading indicates genes that were not differentially expressed; white shading represents genes in the pathway not represented on the microarray.</p

    Differential gene expression associated with intracellular pathogen recognition receptors 24 hours post-<i>M. bovis</i> challenge.

    No full text
    <p>Genes associated with intracellular PRR signalling showing differential expression are highlighted in colour. Colour intensity indicates the degree of upregulation (red) or downregulation relative to the control MDM. Grey shading indicates genes that were not differentially expressed; white shading represents genes in the pathway not represented on the microarray; viral PAMPs are shaded orange.</p

    Differential gene expression in the TLR signalling pathway 2 hours post-<i>M. bovis</i> challenge.

    No full text
    <p>Genes within the TLR signalling pathway showing differential expression are highlighted in colour. Colour intensity indicates the degree of upregulation (red) or downregulation relative to the control MDM. Grey shading indicates genes that were not differentially expressed; white shading represents genes in the pathway not represented on the microarray; mycobacterial PAMPs are shaded orange.</p

    Schematic depicting the experimental design used in the current study.

    No full text
    <p>MDM were cultured in 24-well tissue culture plates (2×10<sup>5</sup> cells per well) and challenged with <i>M. bovis</i> (MOI 2∶1). RNA was extracted from <i>M.bovis</i>-challenged and non-challenged control MDM at three time points post-challenge: 2 hours, 6 hours and 24 hours. In addition, RNA was extracted from a 0 hour non-challenged control to assess potential non-experimental changes in gene expression. The MDM lysates from replicate tissue culture wells (shaded) were pooled for RNA extraction. Global gene expression for the control and <i>M. bovis</i>-challenged MDM was analysed using the Affymetrix® GeneChip® Bovine Genome Array.</p
    corecore