56 research outputs found

    Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome.

    Get PDF
    Introduction: Childhood-onset nephrotic syndrome has a variable clinical course. Improved predictive markers of long-term outcomes in children with nephrotic syndrome are needed. This study tests the association between baseline urinary epidermal growth factor (uEGF) excretion and longitudinal kidney function in children with nephrotic syndrome. Methods: The study evaluated 191 participants younger than 18 years enrolled in the Nephrotic Syndrome Study Network, including 118 with their first clinically indicated kidney biopsy (68 minimal change disease; 50 focal segmental glomerulosclerosis) and 73 with incident nephrotic syndrome without a biopsy. uEGF was measured at baseline for all participants and normalized by the urine creatinine (Cr) concentration. Renal epidermal growth factor (EGF) mRNA was measured in the tubular compartment microdissected from kidney biopsy cores from a subset of patients. Linear mixed models were used to test if baseline uEGF/Cr and EGF mRNA expression were associated with change in estimated glomerular filtration rate (eGFR) over time. Results: Higher uEGF/Cr at baseline was associated with slower eGFR decline during follow-up (median follow-up = 30 months). Halving of uEGF/Cr was associated with a decrease in eGFR slope of 2.0 ml/min per 1.73 m Conclusion: uEGF/Cr may be a useful noninvasive biomarker that can assist in predicting the long-term course of kidney function in children with incident nephrotic syndrome

    Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study

    Get PDF
    Introduction: The Cure Glomerulonephropathy Network (CureGN) is a 66-center longitudinal observational study of patients with biopsy-confirmed minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, or IgA nephropathy (IgAN), including IgA vasculitis (IgAV). This study describes the clinical characteristics and treatment patterns in the IgA cohort, including comparisons between IgAN versus IgAV and adult versus pediatric patients. Methods: Patients with a diagnostic kidney biopsy within 5 years of screening were eligible to join CureGN. This is a descriptive analysis of clinical and treatment data collected at the time of enrollment. Results: A total of 667 patients (506 IgAN, 161 IgAV) constitute the IgAN/IgAV cohort (382 adults, 285 children). At biopsy, those with IgAV were younger (13.0 years vs. 29.6 years, P < 0.001), more frequently white (89.7% vs. 78.9%, P = 0.003), had a higher estimated glomerular filtration rate (103.5 vs. 70.6 ml/min per 1.73 m2, P < 0.001), and lower serum albumin (3.4 vs. 3.8 g/dl, P < 0.001) than those with IgAN. Adult and pediatric individuals with IgAV were more likely than those with IgAN to have been treated with immunosuppressive therapy at or prior to enrollment (79.5% vs. 54.0%, P < 0.001). Conclusion: This report highlights clinical differences between IgAV and IgAN and between children and adults with these diagnoses. We identified differences in treatment with immunosuppressive therapies by disease type. This description of baseline characteristics will serve as a foundation for future CureGN studies

    Risk Factors for Short- and Long-Term Outcomes in Children With STEC-HUS/D HUS: A Single-Center Experience

    No full text
    Background . Hemolytic uremic syndrome (HUS) is one of the common causes for acute kidney injury in childhood. Objective . The goals of our study were to identify risk factors for short-term complications and long-term outcomes of chronic kidney disease (CKD) in Shiga toxin–producing Escherichia coli (STEC)-HUS and other diarrhea positive (D + ) HUS. Methods . Retrospective chart review was obtained of 58 pediatric patients treated for STEC-HUS and other D + HUS between February 2002 and January 2011. Results . Thirty-three patients (56.9%) required dialysis. Dialysis was more likely initiated if a patient was a female ( P 10 g/dL ( P = .009) at admission. Neurological complications developed only among 5 dialyzed patients ( P 10 days ( P = .0004), or HGB level >10 g/dL ( P = .034) at admission. Conclusions . Children with STEC-HUS/D + HUS who may need dialysis are identified by female gender, lower urine output, higher serum creatinine level, and higher HGB at admission. They are at higher risk developing central nervous system complications especially if they needed HD. Children requiring >10 days of dialysis are at risk for development of CKD

    Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease

    No full text
    Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD

    Multiple Targets for Novel Therapy of FSGS Associated with Circulating Permeability Factor

    No full text
    A plasma component is responsible for altered glomerular permeability in patients with focal segmental glomerulosclerosis. Evidence includes recurrence after renal transplantation, remission after plasmapheresis, proteinuria in infants of affected mothers, transfer of proteinuria to experimental animals, and impaired glomerular permeability after exposure to patient plasma. Therapy may include decreasing synthesis of the injurious agent, removing or blocking its interaction with cells, or blocking signaling or enhancing cell defenses to restore the permeability barrier and prevent progression. Agents that may prevent the synthesis of the permeability factor include cytotoxic agents or aggressive chemotherapy. Extracorporeal therapies include plasmapheresis, immunoadsorption with protein A or anti-immunoglobulin, or lipopheresis. Oral or intravenous galactose also decreases Palb activity. Studies of glomeruli have shown that several strategies prevent the action of FSGS sera. These include blocking receptor-ligand interactions, modulating cell reactions using indomethacin or eicosanoids 20-HETE or 8,9-EET, and enhancing cytoskeleton and protein interactions using calcineurin inhibitors, glucocorticoids, or rituximab. We have identified cardiotrophin-like cytokine factor 1 (CLCF-1) as a candidate for the permeability factor. Therapies specific to CLCF-1 include potential use of cytokine receptor-like factor (CRLF-1) and inhibition of Janus kinase 2. Combined therapy using multiple modalities offers therapy to reverse proteinuria and prevent scarring

    Gluten-Free Diet in Childhood Difficult-to-Treat Nephrotic Syndrome: A Pilot Feasibility Study

    No full text
    Introduction: Minimal change disease in childhood can follow a frequently relapsing or steroid-dependent course in up to 40% of cases. Second-line immunosuppressive medications that are used to manage these patients are associated with significant adverse effects. There is a need for safer alternative treatments for difficult-to-treat nephrotic syndrome. Therefore, we conducted an open-label feasibility study to assess the safety and efficacy of a gluten-free diet as treatment for pediatric patients with difficult-to-treat nephrotic syndrome. As a second aim, we sought to determine if the plasma zonulin concentration can identify those who are more likely to respond to this intervention. Methods: Seventeen patients were placed on a gluten-free diet for 6 months. A positive response was defined as a 50% reduction in the relapse rate compared to the preceding 6 months or the ability to discontinue 1 immunosuppressive drug. Results: Five (29%) participants had a positive response to the dietary intervention. The gluten-free diet was well tolerated with no clinical or laboratory adverse events. Plasma zonulin concentration was elevated in patients who failed to benefit from the gluten-free diet. Discussion/Conclusion: A gluten-free diet may be a useful adjunctive intervention for patients with difficult-to-treat nephrotic syndrome that can be implemented prior to resorting to second-line immunosuppressive therapy. Development of the plasma zonulin level as a biomarker to predict efficacy would facilitate rational use of a gluten-free diet in the management of nephrotic syndrome

    Renal and Hematological Effects of CLCF-1, a B-Cell-Stimulating Cytokine of the IL-6 Family

    No full text
    CLCF-1 is a cytokine known for B-cell stimulation and for neurotrophic properties. We have identified CLCF-1 as a potential injurious factor in the human renal disease focal segmental glomerulosclerosis (FSGS). We investigated its effects on renal cells and renal function in in vitro and in vivo studies. Methods include measurement of the effect of CLCF-1 on phosphorylation of target molecules of the JAK/STAT pathway, on cytoskeleton and cell morphology in cultured podocytes, on albumin permeability of isolated rat glomeruli, and on tissue phosphorylation and urine albumin after acute or chronic CLCF-1 injection. In addition, cell sorting was performed to determine the presence of cells expressing CLCF-1 in spleen and bone marrow of normal mice and the effect of CLCF-1 infusion on splenic B-cell populations. CLCF-1 increased phosphorylation of STAT3 in multiple cell types, activated podocytes leading to formation of lamellipodia and decrease in basal stress fibers, increased glomerular albumin permeability, and increased STAT3 phosphorylation of peripheral blood cells and renal cortex. CLCF-1 increased urine albumin/creatinine ratio in mice and increased B-cell expression of IgG in mouse spleen. We conclude that CLCF-1 has potentially important systemic effects, alters podocyte function, and may contribute to renal dysfunction and albuminuria
    • …
    corecore