20 research outputs found

    Stoppage of Light Made Flexible by an Additional Control Field

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a Lambda system facilitates stoppage of light in a coheren tly driven Doppler broadened atomic medium via electromagnetic induced transparencyComment: 11 pages, 3 figures, typed in Latex, Accepted in JM

    Causality in Propagation of a Pulse in a Nonlinear Dispersive Medium

    Full text link
    We investigate the causal propagation of the pulse through dispersive media by very precise numerical solution of the coupled Maxwell-Bloch equations without any approximations about the strength of the input field. We study full nonlinear behavior of the pulse propagation through solid state media like ruby and alexandrite. We have demonstrated that the information carried by the discontinuity, {\it i.e}, front of the pulse, moves inside the media with velocity cc even though the peak of the pulse can travel either with sub-luminal or with super-luminal velocity. We extend the argument of Levi-Civita to prove that the discontinuity would travel with velocity cc even in a nonlinear medium.Comment: 4 pages, 4 figures, 2 table

    Rapid-adiabatic-passage-based super-resolution microscopy in semiconductor quantum dot system

    Full text link
    We theoretically investigate rapid adiabatic passage(RAP)-based super-resolution imaging in a two-level quantum dot system interacting with two structured beams. To understand the physical mechanism behind the formation of super-resolution for the experiment of Kaldewey {\it et. al.,}[Nature Photonics 10.1038/s41566-017-0079-y (2018)], we first use Liouville's density matrix where photon-mediated radiative and non-radiative decays are incorporated. A suitably chosen spatiotemporal envelope of the structured beams enables the formation of a super-resolution image. We also find that the feature size of the image depends on the intensity of the Laguerre Gaussian beam(LG). However, the created image resolution undergoes distortion due to the existence of a low-intensity circular ring. The unwanted circular ring arises from the dominance of the LG beam tail over the super-Gaussian(SG) beam tail, initiating the residual population transfer from the ground state to the excited state. This limitation can be overcome by using the Bessel-modulated truncated structured LG and SG beams. We next study the dynamics of the semiconductor quantum dot system at finite temperatures wherein the phonon interaction becomes imperative. We employ the polaron-transformed master equation to explore the system at higher temperatures. Our numerical results confirm that the sharpness of the image remains intact at low temperatures with weak phonon coupling. Hence, the proposed scheme may open up applications in nano-scale imaging with quantum dots.Comment: 14 pages, 12 figure

    Coherent population transfer with polariton states in circuit QED

    Full text link
    This article proposes a new method to increase the efficiency of stimulated Raman adiabatic passage (STIRAP) in superconducting circuits using a shortcut to the adiabaticity (STA) method. The STA speeds up the adiabatic process before decoherence has a significant effect, thus leading to increased efficiency. This method achieves fast, high-fidelity coherent population transfer, known as super-adiabatic STIRAP (saSTIRAP), in a dressed state-engineered Λ\Lambda system with polariton states in circuit QED

    Self-induced Transparency in a Semiconductor Quantum Dot medium at ultra-cold temperatures

    Full text link
    We investigate the feasibility of minimum absorption and minimum broadening of pulse propagation in an inhomogeneously broadened semiconductor quantum dot medium. The phonon interaction is inevitable in studying any semiconductor quantum dot system. We have used the polaron transformation technique to deal with quantum dot phonon interaction in solving system dynamics. We demonstrate that a short pulse can propagate inside the medium with minimal absorption and broadening in pulse shape. The stable pulse area becomes slightly higher than the prediction of the pulse area theorem and is also dependent on the environment temperature. The change in the final pulse shape is explained very well by numerically solving the propagation equation supported by the susceptibility of the medium. Our system also exhibits the pulse breakup phenomena for higher input pulse areas. Therefore, the considered scheme can have important applications in quantum communication, quantum information, and mode-locking with the advantage of scalability and controllability.Comment: 11 pages, 11 figure
    corecore