86 research outputs found

    A Thiazole Coumarin (TC) turn-on fluorescence probe for AT-base pair detection and multipurpose applications in different biological systems

    Get PDF
    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based Thiazole Coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-Activated Cell Sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology

    Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity

    Get PDF
    Previous studies have analyzed patterns of transcription, Transcription Factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Zinc dependent recognition of a human CpG island sequence by the mammalian spermatidal protein TP2

    No full text
    Rat spermatidal protein TP2 is a zinc metalloprotein with two atoms of zinc coordinated to cysteine and histidine residues and condenses alternating GC copolymer preferentially in a zinc dependent manner [Kundu, T. K., & Rao, M. R. S. (1995) Biochemistry 34, 5143-5150]. In the present study, we have used a 40-mer oligonucleotide containing a human CpG island sequence to study its interaction with TP2 by gel mobility shift assays. A specific complex was observed in the presence of poly(dI)· poly(dC). Preincubation of TP2 with 10 mM EDTA or 1 mM 1, 10-o-phenanthroline inhibited the complex formation by more than 90%. Competition experiments with various polynucleotides revealed the following order of efficiency: poly(dG-dC)·poly(dG-dC) > cold homologous oligonucleotide > poly(dA-dT)·poly-(dA-dT). Homoduplexes poly(dG)·poly(dC) and poly(dA)·poly(dT) had no effect on the complex formation. Chromomycin A3, a GC minor groove binding drug, inhibited the complex formation. Methylation of the CpG doublet within the CpG island sequence by SssI methylase (CpG methylase) completely abolished the complex formation. Methylation of G at the N-7 position with dimethyl sulfate did not affect the recognition of CpG island by TP2. Thus, CpG islands, widely distributed in the mammalian genome, may serve as specific loci for initiation of chromatin condensation by TP2 during the later stages of spermiogenesis

    DNA Condensation by the Rat Spermatidal Protein TP2 Shows GC-Rich Sequence Preference and Is Zinc Dependent

    No full text
    Transition protein-2 (TP2), isolated from rat testes, was recently shown to be a zinc metalloprotein. We have now carried out a detailed analysis of the DNA condensing properties of TP2 with various polynucleotides using circular dichroism spectroscopy. The condensation of the alternating copolymers by TP2 (incubated with 10 mu M ZnSO4), namely, poly(dG-dC). poly(dG-dC) and poly(dA-dT). poly(dA-dT), was severalfold higher than condensation of either of the homoduplexes poly(dG). poly-(dC) and poly(dA). poly(dT) or rat oligonucleosomal DNA. Between the two alternating copolymers, poly(dG-dC). poly(dG-dC) was condensed 3.2-fold more effectively than poly(dA-dT). poly(dA-dT). Preincubation of TP2 with 5 mM EDTA significantly reduced its DNA-condensing property. Interestingly, condensation of the alternating copolymer poly(dI-dC). poly(dI-dC) by TP2 was much less as compared to that of poly(dG-dC). poly(dG-dC). The V8 protease-derived N-terminal fragment (88 aa) condensed poly(dA-dT). poly(dA-dT) to a very small extent but did not have any effect on poly(dG-dC). poly-(dG-dC). The C-terminal fragment (28 aa) was able to condense poly(dA-dT) . poly(dA-dT) more effectively than poly(dG-dC). poly(dG-dC). These results suggest that TP2 in its zinc-coordinated form condenses GC-rich polynucleotides much more effectively than other types of polynucleotides. Neither the N-terminal two-thirds of TP2 which is the zinc-binding domain nor the C-terminal basic domain are as effective as intact TP2 in bringing about condensation of DNA

    Zinc Dependent Recognition of a Human CpG Island Sequence by the Mammalian Spermatidal Protein TP2

    No full text
    Rat spermatidal protein TP2 is a zinc metalloprotein with two atoms of zinc coordinated to cysteine and histidine residues and condenses alternating GC copolymer preferentially in a zinc dependent manner [Kundu, T. K., & Rao, M. R. S. (1995) Biochemistry 34, 5143-5150]. In the present study, we have used a 40-mer oligonucleotide containing a human CpG island sequence to study its interaction with TP2 by gel mobility shift assays. A specific complex was observed in the presence of poly(dI). poly(dC). Preincubation of TP2 with 10 mM EDTA or 1 mM 1, 10-o-phenanthroline inhibited the complex formation by more than 90%. Competition experiments with various polynucleotides revealed the following order of efficiency: poly(dG-dC). poly(dG-dC) > cold homologous oligonucleotide > poly(dA-dT). poly(dA-dT). Homoduplexes poly(dG). poly(dC) and poly(dA). poly(dT) had no effect on the complex formation. Chromomycin A(3), a GC minor groove binding drug, inhibited the complex formation. Methylation of the CpG doublet within the CpG island sequence by SssI methylase (CpG methylase) completely abolished the complex formation. Methylation of G at the N-7 position with dimethyl sulfate did not affect the recognition of CpG island by TP2. Thus, CpG islands, widely distributed in the mammalian genome, may serve as specific loci for initiation of chromatin condensation by TP2 during the later stages of spermiogenesi

    Electrical conduction in glass ceramics containing metal nanodispersoids

    No full text
    Silver particles of diameters ranging from 3.4 to 25.8 nm have been grown within a glass ceramic by controlling the morphology of the crystalline phase. The fractal dimension of the crystal phase has a marked effect on the particle diameter. The DC electrical resistivity of the glass–ceramic metal nanocomposites has been measured over the temperature range from 100 to 300 K. A variable-range hopping conduction between localized states generated by silver nanoparticles within the glass determines the resistivity behavior in the temperature range from 235 to 333 K. Electrical resistivity in the range from 110 to 235 K arises due to the contribution of both large and small metallic particles (∼3 nm) in a percolative configuration. The smaller particles show semiconducting behavior due to a quantum size effect. In the specimen containing 25.8-nm-median-diameter nanoparticles of silver, the resistivity arises through an electron tunnelling mechanism
    corecore