20 research outputs found

    Chemical unit co-substitution enabling broadband and tunable near-infrared emission in garnet-type Lu3Sc2Ga3O12:Cr3+ phosphors

    No full text
    Although near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) are desired for non-visible light source applications, the design of broadband NIR phosphors remains a challenge. Inspired by the chemical unit co-substitution strategy for the modification of composition and local structure, we realize a tunable redshift emission from 706 to 765 nm in garnet-type Lu3Sc2Ga3O12:Cr3+ with a broadened full width at half maximum and enhanced photoluminescence intensity by introducing a [Mg2+-Si4+] unit into the [Sc3+-Ga3+] couple. Structural and spectral analyzes demonstrate that the co-substitution reduces the local symmetry and crystal field strength of the [CrO6] octahedra, thus leading to inhomogeneous widening of the 4T2→4A2 emission and enhanced blue absorption. Furthermore, the 4T2→4A2 emission exhibits a phonon-assisted character at low temperatures due to the thermal coupling effect with the 2E level. The fabricated NIR pc-LED based on the optimized NIR phosphor exhibits excellent potential in night vision and imaging applications

    Thermal Behavior and Pyrolysis Kinetics of Mushroom Residue with the Introduction of Waste Plastics

    No full text
    Co-pyrolysis is considered a very promising technology for the treatment of solid wastes as it can rapidly realize the volume reduction of raw materials and obtain high value-added products. To realize the resource utilization of newly emerging solid wastes in relation to edible fungi residue and waste plastics, mushroom residue (MR), a representative of edible fungi residue, was co-pyrolyzed with waste plastic bags (PE), waste plastic lunch boxes (PP), and waste plastic bottles (PET). The thermal behavior and pyrolysis kinetics of the mixtures were investigated. It was found that the softening of the plastics in the mixtures led to an increase in the initial pyrolysis temperature of MR by 2–27 °C, while the pyrolytic intermediates of MR could greatly promote the decomposition of the plastics, resulting in a decrease in the initial pyrolysis temperatures of PE, PP, and PET in the mixtures by 25, 8, and 16 °C, respectively. The mixture of MR and PE (MR/PE) under different mixture ratios showed good synergies, causing the pyrolysis peaks attributed to MR and PE to both move towards the lower temperature region relative to those of individual samples. The increase in heating rate led to enhanced thermal hysteresis of the reaction between MR and PE. The strength of the interaction between plastics and MR based on mass variation was subject to the order PE > PP > PET. The pyrolysis activation energies of MR, PE, PP, and PET calculated from kinetic analysis were 6.18, 119.05, 84.30, and 74.38 kJ/mol, respectively. The activation energies assigned to MR and plastics were both reduced as plastics were introduced to co-pyrolyze with MR, indicating that MR and plastics have a good interaction in the co-pyrolysis process. This study provides theoretical and experimental guidance for the resource utilization of agricultural solid wastes via thermochemical conversion

    Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration

    No full text
    The southeastern coastal region is one of the most developed and populated areas in China. Meanwhile, it has been severely impacted by acid rain over many years. The chemical compositions and carbon isotope compositions of dissolved inorganic carbon (delta C-13(DIC)/in river water in the high-flow season were investigated to estimate the chemical weathering and associated atmospheric CO2 consumption rates as well as the acid-deposition disturbance. Mass balance calculations indicated that the dissolved loads of major rivers in the Southeast Coastal River Basin (SECRB) were contributed to by atmospheric (14.3 %, 6.6 %-23.4 %), anthropogenic (15.7 %, 0 %-41.1 %), silicate weathering (39.5 %, 17.8 %-74.0 %) and carbonate weathering inputs (30.6 %, 3.9 %-62.0 %). The silicate and carbonate chemical weathering rates for these river watersheds were 14.2-35.8 and 1.8-52.1 t km(-2) a(-1), respectively. The associated mean CO2 consumption rate by silicate weathering for the whole SECRB was 191 x 10(3) mol km(-2) a(-1). The chemical and delta C-13(DIC) evidence indicated that sulfuric and nitric acid (mainly from acid deposition) were significantly involved in the chemical weathering of rocks. There was an overestimation of CO2 consumption at 0.19 x 10(12) g Ca-1 if sulfuric and nitric acid were ignored, which accounted for about 33.6% of the total CO2 consumption by silicate weathering in the SECRB. This study quantitatively highlights the role of acid deposition in chemical weathering, suggesting that the anthropogenic impact should be seriously considered in estimations of chemical weathering and associated CO2 consumption

    Cosmogenic nuclides (Be-10 and Al-26) erosion rate constraints in the Badain Jaran Desert, northwest China: implications for surface erosion mechanisms and landform evolution

    No full text
    Both tectonics and climate affect surface erosion and change the landform. Long-term surface erosion rates determined by in situ produced cosmogenic nuclides are useful quantitative constraints for landform evolution in geological time scale. Measurements of cosmogenic Be-10 and Al-26 in the granitic rocks exposed in the Badain Jaran Desert, give a mean erosion rate of 7.3 +/- 2.6 m/Ma, which is an order of magnitude higher than those reported in other extremely arid regions. Tectonic activity is supposed to be the first order control on regional erosion rate by comparing the 10Be erosion rates of arid regions with different precipitation ranges and tectonic activities worldwide. However the higher erosion rates in the Badain Jaran Desert compared with other arid regions within the stable tectonic background were attributed to the wind erosion and periodically warmer and wetter climate since late Pleistocene. Besides, the estimated eroded mass flux of 7.8 x 10(4) t/y suggests that erosion products of bedrocks in the Badian Jaran Desert only contribute minor desert deposits, which indicates massive exogenous materials input to the desert

    The long-term denudation rate of granitic regolith in Qinhuangdao, North China determined from the in situ depth profile of the cosmogenic nuclides 26Al and 10Be

    No full text
    This study quantifies the surface denudation rate of granitic regolith via the application of the in situ cosmogenic 26Al and 10Be depth profile in China. The concentration ranges of 26Al and 10Be in the quartz along the ~3-m granitic regolith profile in Qinhuangdao are (4.9–23.1) × 105 and (2.3–36.6) × 104 atoms/g, respectively. With the exception of the surface sample, both 26Al and 10Be concentrations decrease exponentially with sample depth. The Chi-square best-fitting results revealed a total denudation rate of ~9 m/Ma averaged over a 103–105 a timescale, which is lower than the values observed in global granitic outcrops. Compared with global datasets, the flat terrain due to the lack of tectonic activities is most likely the dominant factor that controls the local denudation process. The surface sample offsets from the theoretical cosmogenic nuclide distribution implies that the denudation rate from river basin sediment could be overestimated because of the bioturbation in the surficial soil layer

    Effect of Adding De-Oiled Kitchen Water on the Bioconversion of Kitchen Waste Treatment Residue by Black Soldier Fly Larvae

    No full text
    With the continuous development of society, the output of kitchen waste (KW) is fast increasing. De-oiled kitchen water (DKW) and kitchen waste treatment residue (KWTR), two main by-products of the KW treatment industry, are produced accordingly on a large scale. The need to develop an effective technique for the utilization of DKW and KWTR is attracting wide attention. In the present study, black soldier fly larvae (BSFL) were employed as a biological treatment method to treat KWTR with the addition of DKW. The influence of DKW (0–140 mL) on the efficiency of BSFL treatment evaluated by the growth and development of BSFL, the body composition of BSFL, the nutrient content of bioconversion residue (BR), and the bioconversion efficiency of KWTR, was investigated. The results showed that the growth and development of BSFL, the body composition of BSFL, and the conversion rate of KWTR were initially promoted and then inhibited with the addition of DKW. Notably, the amount of DKW added in the T110 group was the most suitable for the growth of BSFL and the accumulation of body composition. Compared with the blank comparison group, the content of crude protein (CP), crude ash (CA), salinity, total phosphorus (TP), and dry matter (DM) of BSFL in the T110 group increased by 3.54%, 6.85%, 0.98%, 0.07% and 2.98%, respectively. However, the addition of DKW could steadily increase the nutrient content of BR, with the highest amount at 140 mL DKW. Following DKW addition, the contents of CP, ether extract (EE), crude fiber (CF), organic matter (OM), total nitrogen (TN), TP, and total potassium (TK) were increased by 4.56%, 3.63%, 10.53%, 5.14%, 0.73%, 0.75%, and 0.52%, respectively, compared with those of the blank comparison group. The study showed that DKW could be used as a nutrient additive in the bioconversion process of KWTR by BSFL, which provided a new method for the resource utilization of DKW

    The influence of carbonate precipitation on riverine magnesium isotope signals: New constrains from Jinsha River Basin, Southeast Tibetan Plateau

    No full text
    Magnesium isotope behavior in dissolution and precipitation reactions during chemical weathering have been well documented. However, mechanisms of mineral dissolution and precipitation impact on the riverine Mg isotope composition under different climatic and geology background are not well constrained, which limits Mg isotope application in weathering research. Mg isotopic compositions for solute and suspended sediments in Jinsha River Basin, located in Tibetan Plateau, China, were examined to address this issue. The delta Mg-26 values for dissolved loads range from -1.67 parts per thousand to -0.5 parts per thousand, and the suspended loads show systematically heavier Mg isotope compositions (-1.15 parts per thousand to -0.06 parts per thousand). Conservative mixing between different rock weathering end-members fails to fully explain Mg isotopic composition variation of Jinsha River waters based on mass balance and mixing model with the river geochemistry data. Mg in rivers draining dominantly carbonate and evaporite is isotopically heavier compared with the value of catchment bedrocks, and water pH and delta Mg-26 values are negatively correlated in carbonate (calcite and dolomite) oversaturated river waters, which suggests the precipitation of secondary carbonate as an important mechanism driving the delta Mg-26 of dissolved loads heavier. For carbonate unsaturated waters, Mg concentrations and delta Mg-26 values are intermediate between those of silicate dominated basins and carbonate oversaturated waters. The results suggest two possible different mechanisms controlling river solute delta Mg-26 values: fractionation during carbonate precipitation incorporating of Mg; and conservative mixing between a solute end-member formed from carbonate precipitation and end-members from rock weathering. This study provides new evidence and insights in carbonate precipitation processes regulating river Mg isotope signature and its potential influence on Mg cycling. (C) 2019 Elsevier Ltd. All rights reserved
    corecore