3 research outputs found

    The moment of truth for WIMP Dark Matter

    Full text link
    We know that dark matter constitutes 85% of all the matter in the Universe, but we do not know of what it is made. Amongst the many Dark Matter candidates proposed, WIMPs (weakly interacting massive particles) occupy a special place, as they arise naturally from well motivated extensions of the standard model of particle physics. With the advent of the Large Hadron Collider at CERN, and a new generation of astroparticle experiments, the moment of truth has come for WIMPs: either we will discover them in the next five to ten years, or we will witness the inevitable decline of WIMP paradigm.Comment: To appear in Nature (Nov 18, 2010

    Dark Matter Annihilation around Intermediate Mass Black Holes: an update

    Full text link
    The formation and evolution of Black Holes inevitably affects the distribution of dark and baryonic matter in the neighborhood of the Black Hole. These effects may be particularly relevant around Supermassive and Intermediate Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite being larger and more dense, spikes evolve at the very centers of galactic halos, in regions where numerous dynamical effects tend to destroy them. Mini-spikes may be more likely to survive, and they have been proposed as worthwhile targets for indirect Dark Matter searches. We review here the formation scenarios and the prospects for detection of mini-spikes, and we present new estimates for the abundances of mini-spikes to illustrate the sensitivity of such predictions to cosmological parameters and uncertainties regarding the astrophysics of Black Hole formation at high redshift. We also connect the IMBHs scenario to the recent measurements of cosmic-ray electron and positron spectra by the PAMELA, ATIC, H.E.S.S., and Fermi collaborations.Comment: 12 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics

    Status of dark matter detection

    No full text
    corecore