32 research outputs found

    Dosimetric Performance and Planning/Delivery Efficiency of a Dual-Layer Stacked and Staggered MLC on Treating Multiple Small Targets: A Planning Study Based on Single-Isocenter Multi-Target Stereotactic Radiosurgery (SRS) to Brain Metastases.

    Get PDF
    Purpose: To evaluate the dosimetric performance and planning/delivery efficiency of a dual-layer MLC system for treating multiple brain metastases with a single isocenter. Materials and Methods: 10 patients each with 6-10 targets with volumes from 0.11 to 8.57 cc, and prescription doses from 15 to 24 Gy, were retrospectively studied. Halcyon has only coplanar delivery mode. Halcyon V1 MLC modulates only with the lower layer at 1 cm resolution, whereas V2 MLC modulates with both layers at an effective resolution of 0.5 cm. For each patient five plans were compared varying MLC and beam arrangements: the clinical plan using multi-aperture dynamic conformal arc (DCA) and non-coplanar arcs, Halcyon-V1 using coplanar-VMAT, Halcyon-V2 using coplanar-VMAT, HDMLC-0.25 cm using coplanar-VMAT, and HDMLC-0.25 cm using non-coplanar-VMAT. All same-case plans were generated following the same planning protocol and normalization. Conformity index (CI), gradient index (GI), V12Gy, V6Gy, V3Gy, and brain mean dose were compared. Results: All VMAT plans met clinical constraints for critical structures. For targets with diameter \u3c 1 cm, Halcyon plans showed inferior CI among all techniques. For targets with diameter \u3e1 cm, Halcyon VMAT plans had CI similar to non-coplanar VMAT plans, and better than non-coplanar clinical DCA plans. For GI, Halcyon MLC plans performed similarly to coplanar HDMLC plans and inferiorly compared to non-coplanar HDMLC plans. All coplanar VMAT plans (Halcyon MLC and HDMLC) and clinical DCA plans had similar V12Gy, but were inferior compared to non-coplanar VMAT plans. Halcyon plans had slightly reduced V3Gy and mean brain dose compared to HDMLC plans. The difference between Halcyon V1 and V2 is only significant in CI of tumors less than 1cm in diameter. Halcyon plans required longer optimization than Truebeam VMAT plans, but had similar delivery efficiency. Conclusion: For targets with diameter \u3e1 cm, Halcyon\u27s dual-layer stacked and staggered MLC is capable of producing similar dose conformity compared to HDMLC while reducing low dose spill to normal brain tissue. GI and V12Gy of Halcyon MLC plans were, in general, inferior to non-coplanar DCA or VMAT plans using HDMLC, likely due to coplanar geometry and wider MLC leaves. HDMLC maintained its advantage in CI for smaller targets with diameter \u3c1 cm. © 2019 Li, Irmen, Liu, Shi, Alonso-Basanta, Zou, Teo, Metz and Dong

    Multi-Institutional Dosimetric Evaluation of Modern Day Stereotactic Radiosurgery (SRS) Treatment Options for Multiple Brain Metastases.

    Get PDF
    Purpose/Objectives: There are several popular treatment options currently available for stereotactic radiosurgery (SRS) of multiple brain metastases: 60Co sources and cone collimators around a spherical geometry (GammaKnife), multi-aperture dynamic conformal arcs on a linac (BrainLab Elements™ v1.5), and volumetric arc therapy on a linac (VMAT) calculated with either the conventional optimizer or with the Varian HyperArc™ solution. This study aimed to dosimetrically compare and evaluate the differences among these treatment options in terms of dose conformity to the tumor as well as dose sparing to the surrounding normal tissues. Methods and Materials: Sixteen patients and a total of 112 metastases were analyzed. Five plans were generated per patient: GammaKnife, Elements, HyperArc-VMAT, and two Manual-VMAT plans to evaluate different treatment planning styles. Manual-VMAT plans were generated by different institutions according to their own clinical planning standards. The following dosimetric parameters were extracted: RTOG and Paddick conformity indices, gradient index, total volume of brain receiving 12Gy, 6Gy, and 3Gy, and maximum doses to surrounding organs. The Wilcoxon signed rank test was applied to evaluate statistically significant differences (p \u3c 0.05). Results: For targets ≤ 1 cm, GammaKnife, HyperArc-VMAT and both Manual-VMAT plans achieved comparable conformity indices, all superior to Elements. However, GammaKnife resulted in the lowest gradient indices at these target sizes. HyperArc-VMAT performed similarly to GammaKnife for V12Gy parameters. For targets ≥ 1 cm, HyperArc-VMAT and Manual-VMAT plans resulted in superior conformity vs. GammaKnife and Elements. All SRS plans achieved clinically acceptable organs-at-risk dose constraints. Beam-on times were significantly longer for GammaKnife. Manual-VMATA and Elements resulted in shorter delivery times relative to Manual-VMATB and HyperArc-VMAT. Conclusion: The study revealed that Manual-VMAT and HyperArc-VMAT are capable of achieving similar low dose brain spillage and conformity as GammaKnife, while significantly minimizing beam-on time. For targets smaller than 1 cm in diameter, GammaKnife still resulted in superior gradient indices. The quality of the two sets of Manual-VMAT plans varied greatly based on planner and optimization constraint settings, whereas HyperArc-VMAT performed dosimetrically superior to the two Manual-VMAT plans

    Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy

    Get PDF
    PurposeA recent randomized phase III clinical trial in patients with glioblastoma demonstrated the efficacy of tumor treating fields (TTFields), in which alternating electric fields are applied via transducer arrays to a patient’s scalp. This treatment, when added to standard of care therapy, was shown to increase overall survival from 16 to 20.9 months. These results have generated significant interest in incorporating the use of TTFields during postoperative concurrent chemoradiation. However, the dosimetric impact of high-density electrodes on the scalp, within the radiation field, is unknown.MethodsThe dosimetric impact of TTFields electrodes in the radiation field was quantified in two ways: (1) dose calculated in a treatment planning system and (2) physical measurements of surface and deep doses. In the dose calculation comparison, a volumetric-modulated-arc-therapy (VMAT) radiation plan was developed on a CT scan without electrodes and then recalculated with electrodes. For physical measurements, the surface dose underneath TTFields electrodes were measured using a parallel plate ionization chamber and compared to measurements without electrodes for various incident beam angles and for 12 VMAT arc deliveries. Deep dose measurements were conducted for five VMAT plans using Scandidos Delta4 diode array: measured doses on two orthogonal diode arrays were compared.ResultsIn the treatment planning system, the presence of the TTFields device caused mean reduction of PTV dose of 0.5–1%, and a mean increase in scalp dose of 0.5–1 Gy. Physical measurement showed increases of surface dose directly underneath by 30–110% for open fields with varying beam angles and by 70–160% for VMAT deliveries. Deep dose measurement by diode array showed dose decrease of 1–2% in most areas shadowed by the electrodes (max decrease 2.54%).ConclusionThe skin dose in patients being treating with cranial irradiation for glioblastoma may increase substantially (130–260%) with the addition of concurrent TTFields electrodes on the scalp. However, the impact of dose attenuation by the electrodes on deep dose during VMAT treatment is of much smaller, but measureable, magnitude (1–2%). Clinical trials exploring concurrent TTFields with cranial irradiation for glioblastoma may utilize scalp-sparing techniques to mitigate any potential increase in skin toxicity

    Interactive Contribution of Indian Summer Monsoon and Western North Pacific Monsoon to Water Level and Terrestrial Water Storage in the Mekong Basin

    No full text
    Water level (WL) and terrestrial water storage (TWS) are two important indicators for early alerts of hydrological extremes. Their variation is governed by precipitation under monsoon variability, in particular in the Mekong river basin, where it is affected by the interaction between the Indian summer monsoon (ISM) and western North Pacific monsoon (WNPM). This study aimed to quantify the contributions of two monsoons to the water levels of four hydrological stations (i.e., My Thuan, Can Tho, Chau Doc and Tan Chau) on the Mekong Delta and the terrestrial water storage of the entire Mekong River basin through relative importance analysis. Three methods—multivariate linear regression; Lindeman, Merenda and Gold (LMG); and the proportional marginal variance decomposition (PMVD) methods—were selected to quantitatively obtain the relative influence of two monsoons on water level and TWS. The results showed that, from 2010 to 2014, the proportions of the ISM impacts on the water level obtained with the three methods ranged from 55.48 to 81.35%, 50.69 to 57.55% and 55.41 to 93.64% via multivariate linear regression, LMG and PMVD, respectively. Further analysis showed that different choices of time spans could lead to different results, indicated that the corresponding proportion would be influenced by other factors, such as El Niño–Southern Oscillation (ENSO). The removal of ENSO further enlarged the relative importance of the ISM, and the mean values of the four stations were increased by 8.78%, 2.04% and 14.92%, respectively, via multivariate linear regression, LMG and PMVD. Meanwhile, based on the analysis of terrestrial water storage, it was found that the impact of the ISM on the whole Mekong River basin was dominant: the proportions of the impact of the ISM on terrestrial water storage increased to 68.79%, 54.60% and 79.43%, which rose by 11.24%, 2.96% and 19.77%, respectively, via linear regression, LMG and PMVD. The increases almost equaled the quantified proportion for the ENSO component. Overall, the novel technique of quantifying the contributions of monsoons to WL and TWS can be applied to the influence of other atmospheric factors or events on hydrological variables in different regions

    Evaluation of Pollution Level, Spatial Distribution, and Ecological Effects of Antimony in Soils of Mining Areas: A Review

    No full text
    The first global-scale assessment of Sb contamination in soil that was related to mining/smelting activities was conducted based on 91 articles that were published between 1989 and 2021. The geographical variation, the pollution level, the speciation, the influencing factors, and the environmental effects of Sb that were associated with mining/smelting-affected soils were analyzed. The high Sb values mainly occurred in developed (Poland, Italy, Spain, Portugal, New Zealand, Australia) and developing (China, Algeria, Slovakia) countries. Sb concentrations of polluted soil from mining areas that were reported in most countries significantly exceeded the maximum permissible limit that is recommended by WHO, except in Turkey and Macedonia. The soil Sb concentrations decreased in the order of Oceania (29,151 mg/kg) > North Africa (13,022 mg/kg) > Asia (1527 mg/kg) > Europe (858 mg/kg) > South America (37.4 mg/kg). The existing extraction methods for Sb speciation have been classified according to the extractant, however, further research is needed in the standardization of these extraction methods. Modern analytical and characterization technologies, e.g., X-ray absorption spectroscopy, are effective at characterizing chemical speciation. Conditional inference tree (CIT) analysis has shown that the clay content was the major factor that influenced the soil Sb concentration. Non-carcinogenic risks to the public from soil Sb pollution were within the acceptable levels in most regions. An Sb smelter site at the Endeavour Inlet in New Zealand, an abandoned open-pit Sb mine in Djebel Hamimat, Algeria, an old Sb-mining area in Tuscany, Italy, and Hillgrove mine in Australia were selected as the priority control areas. Cynodon dactylon, Boehmeria, Pteris vittata, and Amaranthus paniculatus were found to be potential Sb accumulators. All of the values of bioaccumulation factors for the crops were less than one. However, ingestion of Sb through crop consumption posed potential non-carcinogenic health risks, which should not be neglected. The soil variables (pH, Eh, total sulfur, carbon nitrogen ratio, total organic carbon, and sulfate), the total Sb and the bioavailable Sb, and heavy metal(loid)s (As, Pb, and Fe) were the major parameters affecting the microbial community compositions

    A Novel Bioswitchable miRNA Mimic Delivery System: Therapeutic Strategies Upgraded from Tetrahedral Framework Nucleic Acid System for Fibrotic Disease Treatment and Pyroptosis Pathway Inhibition

    No full text
    Abstract There has been considerable interest in gene vectors and their role in regulating cellular activities and treating diseases since the advent of nucleic acid drugs. MicroRNA (miR) therapeutic strategies are research hotspots as they regulate gene expression post‐transcriptionally and treat a range of diseases. An original tetrahedral framework nucleic acid (tFNA) analog, a bioswitchable miR inhibitor delivery system (BiRDS) carrying miR inhibitors, is previously established; however, it remains unknown whether BiRDS can be equipped with miR mimics. Taking advantage of the transport capacity of tetrahedral framework nucleic acid (tFNA) and upgrading it further, the treatment outcomes of a traditional tFNA and BiRDS at different concentrations on TGF‐β‐ and bleomycin‐induced fibrosis simultaneously in vitro and in vivo are compared. An upgraded traditional tFNA is designed by successfully synthesizing a novel BiRDS, carrying a miR mimic, miR‐27a, for treating skin fibrosis and inhibiting the pyroptosis pathway, which exhibits stability and biocompatibility. BiRDS has three times higher efficiency in delivering miRNAs than the conventional tFNA with sticky ends. Moreover, BiRDS is more potent against fibrosis and pyroptosis‐related diseases than tFNAs. These findings indicate that the BiRDS can be applied as a drug delivery system for disease treatment

    Experimental Investigation on the Mechanical Behavior of Bovine Bone Using Digital Image Correlation Technique

    No full text
    In order to understand the fracture mechanisms of bone subjected to external force well, an experimental study has been performed on the bovine bone by carrying out the three-point bending test with 3D digital image correlation (DIC) method, which provides a noncontact and full field of displacement measurement. The local strain and damage evolution of the bone has been recorded real time. The results show that the deflection measured by DIC agrees well with that obtained by the displacement sensor of the mechanical testing machine. The relationship between the deflection and the force is nearly linear prior to reaching the peak strength which is about 16 kN for the tested bovine tibia. The full-field strain contours of the bone show that the strain distribution depends on not only the force direction, but also the natural bone shape. The natural arched-shape bovine tibia bone could bear a large force, due to the tissue structure with high strength, and the fracture propagation process of the sample initiates at the inner side of the bone first and propagates along the force direction

    Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance

    No full text
    Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future
    corecore