25,951 research outputs found

    Phase Transitions in the NMSSM

    Full text link
    We study phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with the weak scale vacuum expectation values of the singlet scalar, constrained by Higgs spectrum and vacuum stability. We find four different types of phase transitions, three of which have two-stage nature. In particular, one of the two-stage transitions admits strongly first order electroweak phase transition, even with heavy squarks. We introduce a tree-level explicit CP violation in the Higgs sector, which does not affect the neutron electric dipole moment. In contrast to the MSSM with the CP violation in the squark sector, a strongly first order phase transition is not so weakened by this CP violation.Comment: 21 pages, 8 figure

    CP Violation in the Higgs Sector and Phase Transition in the MSSM

    Get PDF
    We investigate the electroweak phase transition in the presence of a large CP violation in the squark sector of the MSSM. When the CP violation is large, scalar-pseudoscalar mixing of the Higgs bosons occurs and a large CP violation in the Higgs sector is induced. It, however, weakens first-order phase transition before the mixing reaches the maximal. Even when the CP violation in the squark sector is not so large that the phase transition is strongly first order, the phase difference between the broken and symmetric phase regions grows to O(1), which leads to successful baryogenesis, when the charged Higgs bosons is light.Comment: 18 pages, 6 figures, LaTeX2

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    Quantum model for magnetic multivalued recording in coupled multilayers

    Full text link
    In this paper, we discuss the possibilities of realizing the magnetic multi-valued (MMV) recording in a magnetic coupled multilayer. The hysteresis loop of a double-layer system is studied analytically, and the conditions for achieving the MMV recording are given. The conditions are studied from different respects, and the phase diagrams for the anisotropic parameters are given in the end.Comment: 8 pages, LaTex formatted, 7 figures (those who are interested please contact the authors requring the figures) Submitted to Physal Review B. Email: [email protected]

    Cluster size dependence of high-order harmonic generation

    Get PDF
    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303 K and 363 K). For the firrst time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 10 for very small average cluster size (~200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighbouring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (~200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure

    Retention of dye tracer in side basins exchanging with subcritical and supercritical flows

    Get PDF
    River engineeringTransport and fate of pollutants in river

    Spectral Retrieval of Latent Heating Profiles from TRMM PR data

    Get PDF
    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "~econsti-LKt~h"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels, are larger than those for latent heat. Larger discrepancies in Q2 at low levels are due to moistening for non-precipitating region that algorithm cannot reconstruct. Nevertheless, the algorithm-reconstructed total Q2 profiles are in good agreement with the CRM-simulated ones

    Small ball probability, Inverse theorems, and applications

    Full text link
    Let ξ\xi be a real random variable with mean zero and variance one and A=a1,...,anA={a_1,...,a_n} be a multi-set in Rd\R^d. The random sum SA:=a1ξ1+...+anξnS_A := a_1 \xi_1 + ... + a_n \xi_n where ξi\xi_i are iid copies of ξ\xi is of fundamental importance in probability and its applications. We discuss the small ball problem, the aim of which is to estimate the maximum probability that SAS_A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdos almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets AA where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.Comment: 47 page
    • …
    corecore