102 research outputs found

    Frequency Chirping of Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    Full text link
    Electromagnetic ion cyclotron waves are known to exhibit frequency chirping, contributing to the rapid scattering and acceleration of energetic particles. However, the physical mechanism of chirping remains elusive. Here, we propose a new model to explain the chirping and provide direct observational evidence for validation. Our results relate the frequency chirping of the wave to both the wave amplitude and magnetic field inhomogeneity for the first time. The general applicability of the model's underlying principle opens a new path toward understanding the frequency chirping of other waves.Comment: 8 pages, 3 figure

    High-fidelity quantitative differential phase contrast deconvolution using dark-field sparse prior

    Get PDF
    Differential phase contrast (DPC) imaging plays an important role in the family of quantitative phase measurement. However, the reconstruction algorithm for quantitative DPC (qDPC) imaging is not yet optimized, as it does not incorporate the inborn properties of qDPC imaging. In this research, we propose a simple but effective image prior, the dark-field sparse prior (DSP), to facilitate the phase reconstruction quality for all DPC-based phase reconstruction algorithms. The DSP is based on the key observation that most pixel values for an idea differential phase contrast image are zeros since the subtraction of two images under anti-symmetric illumination cancels all background components. With this DSP prior, we formed a new cost function in which L0-norm was used to represent the DSP. Further, we developed the algorithm based on the Half Quadratic Splitting to solve this NP-hard L0-norm problem. We tested our new model on both simulated and experimental data and compare it against state-of-The-Art (SOTA) methods including L2-norm and total variation regularizations. Results show that our proposed model is superior in terms of phase reconstruction quality and implementation efficiency, which significantly increases the experimental robustness, while maintaining the data fidelity. In general, the DSP supports high-fidelity qDPC reconstruction without any modification of the optical system, which simplifies the system complexity and benefit all qDPC applications

    Semantic Enhanced Knowledge Graph for Large-Scale Zero-Shot Learning

    Full text link
    Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness

    Retinex-qDPC: automatic background rectified quantitative differential phase contrast imaging

    Full text link
    The quality of quantitative differential phase contrast reconstruction (qDPC) can be severely degenerated by the mismatch of the background of two oblique illuminated images, yielding problematic phase recovery results. These background mismatches may result from illumination patterns, inhomogeneous media distribution, or other defocusing layers. In previous reports, the background is manually calibrated which is time-consuming, and unstable, since new calibrations are needed if any modification to the optical system was made. It is also impossible to calibrate the background from the defocusing layers, or for high dynamic observation as the background changes over time. To tackle the mismatch of background and increases the experimental robustness, we propose the Retinex-qDPC in which we use the images edge features as data fidelity term yielding L2-Retinex-qDPC and L1-Retinex-qDPC for high background-robustness qDPC reconstruction. The split Bregman method is used to solve the L1-Retinex DPC. We compare both Retinex-qDPC models against state-of-the-art DPC reconstruction algorithms including total-variation regularized qDPC, and isotropic-qDPC using both simulated and experimental data. Results show that the Retinex qDPC can significantly improve the phase recovery quality by suppressing the impact of mismatch background. Within, the L1-Retinex-qDPC is better than L2-Retinex and other state-of-the-art DPC algorithms. In general, the Retinex-qDPC increases the experimental robustness against background illumination without any modification of the optical system, which will benefit all qDPC applications

    Pupil-driven quantitative differential phase contrast imaging

    Full text link
    In this research, we reveal the inborn but hitherto ignored properties of quantitative differential phase contrast (qDPC) imaging: the phase transfer function being an edge detection filter. Inspired by this, we highlighted the duality of qDPC between optics and pattern recognition, and propose a simple and effective qDPC reconstruction algorithm, termed Pupil-Driven qDPC (pd-qDPC), to facilitate the phase reconstruction quality for the family of qDPC-based phase reconstruction algorithms. We formed a new cost function in which modified L0-norm was used to represent the pupil-driven edge sparsity, and the qDPC convolution operator is duplicated in the data fidelity term to achieve automatic background removal. Further, we developed the iterative reweighted soft-threshold algorithms based on split Bregman method to solve this modified L0-norm problem. We tested pd-qDPC on both simulated and experimental data and compare against state-of-the-art (SOTA) methods including L2-norm, total variation regularization (TV-qDPC), isotropic-qDPC, and Retinex qDPC algorithms. Results show that our proposed model is superior in terms of phase reconstruction quality and implementation efficiency, in which it significantly increases the experimental robustness while maintaining the data fidelity. In general, the pd-qDPC enables the high-quality qDPC reconstruction without any modification of the optical system. It simplifies the system complexity and benefits the qDPC community and beyond including but not limited to cell segmentation and PTF learning based on the edge filtering property
    • …
    corecore