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ABSTRACT   

Differential phase contrast (DPC) imaging plays an important role in the family of quantitative phase measurement. 

However, the reconstruction algorithm for quantitative DPC (qDPC) imaging is not yet optimized, as it does not 

incorporate the inborn properties of qDPC imaging. In this research, we propose a simple but effective image prior, the 

dark-field sparse prior (DSP), to facilitate the phase reconstruction quality for all DPC-based phase reconstruction 

algorithms. The DSP is based on the key observation that most pixel values for an idea differential phase contrast image 

are zeros since the subtraction of two images under anti-symmetric illumination cancels all background components. With 

this DSP prior, we formed a new cost function in which L0-norm was used to represent the DSP. Further, we developed 

the algorithm based on the Half Quadratic Splitting to solve this NP-hard L0-norm problem. We tested our new model on 

both simulated and experimental data and compare it against state-of-the-art (SOTA) methods including L2-norm and total 

variation regularizations. Results show that our proposed model is superior in terms of phase reconstruction quality and 

implementation efficiency, which significantly increases the experimental robustness, while maintaining the data fidelity. 

In general, the DSP supports high-fidelity qDPC reconstruction without any modification of the optical system, which 

simplifies the system complexity and benefit all qDPC applications. 

   

Keywords: Differential phase contrast; dark-field sparse prior; L0-norm; Half Quadratic Splitting. 

 

1. INTRODUCTION  

Quantitative differential phase-contrast microscopy (qDPC), a non-interferometric quantitative phase retrieval approach, 

has been used for label-free and stain-free optical imaging of live biological specimens both in vitro [1-6] and in vivo [7, 

8]. A quantitative DPC experimental layout involves a 4-f microscopy system in which a programmable LED or LCD 

illumination source generates anti-symmetric illumination patterns [6, 9]. With the combination of oblique plane wave 

illumination and low-pass filtering of the objective lens, the DPC converts the unmeasurable sample phase into a phase-

contrast intensity image. By collecting at least 4 phase-contrast images with asymmetric illuminations in opposite 

directions, the phase component of the sample can be reconstructed through a non-blind deconvolution process, where the 

convolution kernel, in an ideal condition, is defined by the Fourier transform of phase contrast transfer function (PTF) [6]. 

The spatial deconvolution is then transformed into Fourier space division operation.   

However, since no optical system is perfect, qDPC raw images are always corrupted by noise, illumination fluctuations, 

and optical aberrations, resulting in the degeneration of the phase recovery results since the deconvolution for qDPC phase 

reconstruction is ill-conditioned: a small change in input leads to a large change in the output.  

To tackle the impact of noise and illumination fluctuations, and so improve the reconstruction quality of qDPC 

deconvolution, in this research, we propose a high-fidelity qDPC reconstruction algorithm in which the dark-field sparse 

prior (DSP) is proposed and embedded. The DSP is based on the key observation that most pixel values for an idea 

differential phase contrast image are zeros since the subtraction of two images under anti-symmetric illumination cancels 

all background components. 
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2. DARK-FIELD SPARSE PRIOR 

The dark-field sparse prior is based on a proposition of DPC data that (1) the DPC image is a sparse matrix, and (2) the 

sparsity of an idea noise-free DPC image is greater than noise-corrupted DPC images (as shown in Fig. 1).  

To better illustrate this observation, we consider the point spread function 
nh  of the differential phase contrast image 

,n dpcs , which is given by  

 ( ) ( )1

,n ph nh H−  =  x kF , (1) 

where 1−F  is the inverse Fourier transform. k  is the coordinate vector in Fourier space. ( ),ph nH k  is the contrast phase 

transform function (PTF) and is determined by [6] 

 ( ) ( ) ( ) ( ) ( ) ( ) 2

, dph n ill ill ill ill ill illH i P S P S P=  + − −  k k k k k k k k k ,  (2) 

where 
illk  is the coordinate vector in the illumination pupil plane. ( )S k  is the illumination pupil and is a pure-real 

function. ( )P k  for an idea objective lens is a pure-real even function. Let = −k k  in Eq. (4) we obtain 

( ) ( ), ,ph n ph nH H= − −k k . Therefore, 
,ph nH  is an odd function that meets: 

 ( ), 0 0ph nH = .  (3) 

Furthermore, according to the property of Fourier transform, ( )nh x  is a pure-real odd function thus we have  

 ( )d 0nh


−
= x x , (4) 

which implies the fact that the integration of an arbitrary odd function among a symmetric interval is zero. 

The sparsity of ,n dpcs  can be analyzed from both Eq. (3) and Eq. (4). First, according to Eq. (3), the ,ph nH  completely 

removes the direct-current (DC) components in Fourier space which leads to the fact that the absolute value of DPC image 

has the similar visual performance to that of dark-field images (background is black). Second, according to Eq. (4), 

convoluting an image using ( )nh x  generates a sparse image as the kernel cancels out pixels that have the same values. In 

conclusion, ,n dpcs  in an ideal condition is a sparse matrix.  

 

Fig. 1. Simulation of differential phase contrast images. (a) Phase pattern. (b1) and (b2) are simulated image under oblique 

illumination from left and right, respectively. (c1) is the absolute value of differential phase contrast image of (b1) and (b2).  (c2) 

are the absolute value of (b1) and (b2) when corrupted by noises SNR = 0.7. (c3) enlarged part in the purple box. (d) and (e) are 

histograms and CDF (Cumulative Distribution Function) for 320 simulated DPC images with and without noise corruption.  

(a) (b1) (b2)

(c1) (c2) (c3)

(d)

(e)
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The simulated DPC images are shown in Fig. 1. We generate the phase contrast images through simulation as shown 

in Fig. 1 (b1) and 1 (b2). Their difference pattern is shown in Fig. 1 (c1) in which the pattern is similar to a dark-field 

image as most of the pixels are zeros.  If we add random noise to both Fig. 1 (b1) and 1 (b2), the difference pattern will be 

shown in Fig. 1 (c2). A partially enlarged image of the purple box is shown in Fig. 1 (c3). Since the noise is random and 

cannot be canceled by differential operation, the backgrounds where they should be zero are now filled by noise pixels, 

and the DPC-pattern is not as sparse as the noise-free one.  

We also design massive simulations based on different PTFs, and perform statistical analysis shown in Fig. 1 (d) and 

1 (e), the idea DPC images are even sparser than noise-corrupted DPC images. We, therefore, are inspired by this sparse 

observation and propose the dark-field sparse prior (DSP).  

Mathematical proofs are as followed: taking L0-norm on DPC-image, 
,n dpcs , yielding   

 
, ,

, , , 00
, , 0

n r n l

n dpc n r n l

n r n l

I I
s I I

I I

−
= = −

+
.  (5) 

The L0-norm counts the nonzero elements of vector (matrix is vectorized) and meets the triangle inequality in which 

0 0 0
+  +A B A B . Since the pixel values in 

, ,n r n lI I+  are non-negative, the L0-norm of 
,n dpcs  equals to the L0-norm 

of ( ), ,n r n lI I− . Let 
,n r  and 

,n l  be the noise signal or uneven background illumination imposed on 
,n rI  and 

,n lI  . Since 

the random noises and uneven background cannot be completely canceled out by the subtraction, we are able to obtain the 

following inequation 

 ( ) ( ), , , , , , , , ,0 000
n r n l n r n r n l n l n dpc n r n lI I I I s   −  + − +  + − . (6) 

Equation (6) implies that the presence of noises, uneven background illumination, and illumination fluctuations tends to 

increase the L0-norm of ,n dpcs  since those noises cannot be entirely canceled out during the subtraction. In other words, 

high-quality DPC image tends to be sparser than those degraded one. 

Vectorizing φ  and ,n dpcs  within a conventional DPC framework, our sparse-Hessian cost function is defined as, 

 
2

, 0 12
1 1

arg min ,
N N

dsp qDPC n n dpc n

n n

 −

= =

= − + + 
φ

φ K φ s K φ φH  (7) 

where 
nK  is the matrix denoting the convolution with kernel ( )n xh . The first fidelity term in the augmented Lagrangian 

Eq. (7) enforces similarity between the convolution result 
nK φ  and the observed DPC images ,n dpcs . α and β are positive 

penalty parameters for the following regularization terms and are determined based on the noise level.  

The second term is the new proposed DSP involved term aforementioned, and nK φ  is the forward model of DPC which 

can be regarded as generating DPC images with a given estimation of φ  and nK . The L0-norm is used to achieve sparsity 

promotion. The third term is Hessian regularization which can be regarded as higher-order TV regularization. The Hessian 

regularization uses the second gradient which has a smoother regularization result than that of TV one which uses the first-

order gradient. Here H  denotes the Hessian gradient operator.  

Since Eq. (7) involves L0-norm which is a NP-hard problem, we develop two frameworks to approximately tackle the 

L0-norm term.  

3. HALF QUADRATIC SPLITTING  

Equation (7) can be solved by the half quadratic splitting (HQS) algorithm in an alternating manner [10, 11]. By introducing 

N + 1 auxiliary variables, , ( 1,  2,  ,  )n n N=ψ  and G  with respect to the nK φ  and φH  respectively, the problem in 

Eq. (7) is converted into N + 2 sub-problems which are 
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2 22

, 0 02 22
1 1

2

0 2 0

2

0 12

arg min

arg min ,     1,  2,   

arg min

n

N N

n n dpc n n

n n

n n n n N



 

 

 

= =


− + − + −




− + =



− +

 

ψ

G

K φ s K φ ψ φ G

K φ ψ ψ

φ G G

H

H

. (8) 

Here 
0  and 

0  are sufficient large penalty parameters such that they enforce their corresponding L2-norm terms approach 

to zero. For 
nψ  sub-problems (L0-norm), it can be approximately solved by hard-threshold, and the closed-form solution 

is given by [11] 

 

2

01
,       /

,             

N

n nn
n

else

 
=

 
= 


K φ K φ
ψ

0
. (9) 

For G sub-problem (L1-norm), it is solved by the soft-threshold and the closed-form solution is given by [10] 

 

 ( ) ( )0sign max / ,0 = −G φ φH H .  (10) 

 denotes element-wise multiplication. After G and 
nψ  are obtained, the φ  sub-problem is pure-quadratic and can be 

solved by setting the derivative with respect to φ  to zero, and the closed-form solution is given by  

 

 

( )

( )

, 0 0

1

0 0

1

1

N
T T

n n dpc n

n

N
T T

n n

n

 

 

=

=

+ +

=

+ +





K s ψ G

φ

K K

H

H H
, (11) 

where T denotes the transpose of a matrix. Since K  and H  are block-circulant and can be diagonalized by 2D Fourier 

transform,φ  can be computed directly and only at the cost of the Fourier transform. 

 

Algorithm 1: Half quadratic splitting for Eq. (7) 

Input: DPC image ,n dpcs , point spread function 
nK , penalty parameters   and  0  , 

1=φ  

While 
0 max   do  

        Solving 
nψ  sub-problem via Eq. (9) with given φ   

        
0   

        While 
0 max   do 

                Solving G sub-problem via Eq. (10) with given φ  

                Solving φ  sub-problem via Eq. (11) with given nψ  and G 

                0 0a    

        End while 

        0 0a    

End while 

Output: Quantitative phase image φ  

 

To make the algorithm practically working well, a trick is to let and 0  and 0  increase in each iteration to gradually 

enforce 
2

2
0n n− →K φ ψ  and 

2

2
0− →φ GH , and the φ , nψ  and G are updated iteratively with known of each other. 
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In such a manner, the steps of the half quadratic splitting algorithm are sketched in Algorithm 1. In an actual 

implementation 2a =  by default. 3

max 10 =  and 
5

max 10 =  to ensure that 
0  and 

0  become large values.  

4. EXPERIMENTAL STUDY 

4.1 Simulation data 

First we validated our algorithm on simulated data. System parameters were 0.530 =  μm, 0.3NA = , a magnification of 

10  and pixel size of the camera of 3.46 μm. A binary phantom object for the phase target is shown in Fig. 3 (a) where 

the phase is ranged in [0,2]  rad.  

According to the forward model, we generated 2 DPC-images corresponding to top-bottom illuminations and left-right 

illuminations and added Gaussian noises to them. The standard deviation of the Gaussian noise is ( )max min0.2 I I− , where 

maxI  and 
minI  are the maximum and minimum values of each DPC image. Figure 3 (b) shows one of the DPC images 

where the image is severely corrupted by noise. The performance of our dsp-qDPC is compared against the following 

algorithms: 

1) Tikhonov (L2-norm) regularization-based qDPC (L2-qDPC): we use the traditional qDPC reconstruction scheme 

by setting 0.0001 =  in Eq. (1) with L2-norm penalty that is  

 
2

2 2

, 22
1

arg min
N

L qDPC n n dpc

n

−

=

= − +
φ

φ K φ s φ , (12) 

 

2) TV-regularization-based DPC (TV-qDPC): we use the gradient L1-norm penalty function, and 0.1 =   

 
2

, 12
1

arg min
N

TV qDPC n n dpc

n

−

=

= − + 
φ

φ K φ s φ . (13) 

 

Fig. 2. Simulation of DPC reconstruction. (a) ground truth of the phase phantom. (b) The absolute value of DPC image corrupted 

by Gaussian noise. (c) Reconstruction results of L2-qDPC. (d) Results of TV-qDPC. (e) Results of the proposed dsp-qDPC.  

The reconstruction phase for L2-norm regularization is shown in Fig. 2 (c). We also plot the phase value along the red 

curve in the black boxes to show the detailed comparison between reconstruction results and ground truth. According to 

Fig. 2 (c) and Fig. 2 (g), the noise signal is still very large and the algorithm fails to reconstruct the correct phase image.  

Results of TV-qDPC are shown in Fig. 2 (d). The penalty parameter 0.123 = . The TV regularization suppresses the 

impact of the noise signal as the reconstructed result approaches the ground truth as shown in Fig. 2 (a). However, the 

phase image is still corrupted by noise signals as the ‘white-fog effects’ are present in the background. Result of the 

Proc. of SPIE Vol. 12745  127450X-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

proposed dsp-qDPC, where 0.123 =  and 0.06 = , is shown in Fig. 2 (e). According to Fig. 2 (e), the noise signal is 

significantly suppressed as there is no ‘white-fog effects’ in the background. Meanwhile, data fidelity is also guaranteed. 

4.2 Real data 

We validate our dsp-qDPC by imaging the unstained gastric cancer cells. The cells are imaged by an objective lens

0.3,  10NA =  . The pixel size of the camera is 6.5 μm. The illumination wavelength is 532 nm. A region of interest (ROI) 

of size (1200 × 1200) is chosen as shown in Fig. 3 (a). The bright-field image has very low contrast, as the gastric cancer 

cells can be regarded as pure-phase objects.  

As shown in Fig. 3 (b), the TV-DPC cannot suppress the ‘white-fog’ effect caused by uneven illumination fluctuation, 

while the dsp-qDPC significantly removes the ‘white-fog’ effect for the entire ROI as shown in Fig. 3 (c). Zoomed-in 

images listed in Figs. 3 (d1) to 3 (g3) show that our dsp-qDPC improves the reconstruction quality while maintaining the 

data fidelity, as the small structures such as the edges and branches of the cells are preserved.  

 

Fig. 3. Reconstruction results for gastric cancer cells. β = α = 0.01. (a) Bright field image. (b) and (c) are recovery results using 
TV-qDPC and dsp-qDPC. Scale bar is 65 μm. (d1) to (g3) are zoomed-in images corresponding to the areas in the green, black, 

orange, and red boxes. Scale bar is 30 μm 

We conducted tests of dsp-qDPC on color multiplexed single-shot DPC (cDPC) using HeLa cells as samples. The cells 

were illuminated by red, blue, and green colored LEDs and were imaged by an objective lens with 0.3,  10NA =  . The 

pixel size of the camera is 5.85 μm. As shown in Fig. 4 (a), the input raw image for DPC reconstruction showed a phase 

contrast effect due to being illuminated by an oblique plane wave. 

The DSP is a universal prior for qDPC image and it also works for cDPC as the ‘white-fog’ effect is suppressed shown 

in Fig. 4 (c). Zoomed-in images listed in Fig. 4 (d1) to 4 (g3) show that our dsp-qDPC improves the reconstruction quality 

where the clarity of the image is increased, and more delicate structures can be overserved.  

Finally, we show that the dsp-qDPC benefits some potential applications using phase imaging, such as cell 

segmentation tasks (Automatic delineation of the cell boundaries). We applied Wang’s method [12, 13] on both Fig. 4 (b) 

and Fig. 4 (c) with identical model parameters, and segmentation results are shown in Fig. 5. As shown in Figs. 5 (a1) to 

5 (c1), the segmentation results on TV-qDPC output are not satisfactory due to lack of image contrast since the boundary 

signal of cells is reduced by the haze effect. Only a few cells are labeled as shown in Fig. 5 (c1). On the contrary, the 

segmentation results on dsp-qDCP are rather satisfactory where the boundary of the cells is recognized as shown in Fig. 5 

(a2), and most of the cells are labeled as shown in Fig. 5 (c2). 

(a) (b) (c)

(d1) (d2) (d3) (e1) (e2) (e3)

(f1) (f2) (f3) (g1) (g2) (g3)

rad rad
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Fig. 4. Reconstruction results for HeLa cells using cDPC. β = α. (a) Raw image for DPC reconstruction. (b) and (c) are recovery 
results using TV-qDPC and dsp-qDPC. Scale bar is 65 μm. (d1) to (g3) are zoomed-in images corresponding to the areas in the 

black, purple, orange, and green boxes. The scale bar is 30 μm. 

 

Fig. 5. Cell segmentation using phase image. (a1), (b1) and (c1) are boundary map, segmentation map, and counting map for image 

in Fig. 4 (b) (TV-qDPC). (a2), (b2) and (c2) are boundary map, segmentation map, and counting map for image in Fig. 4 (c) (dsp-

qDPC).  

(a) (b) (c)

(d1) (d2) (d3) (e1) (e2) (e3)

(f1) (f2) (f3) (g1) (g2) (g3)

rad rad

(a1) (b1) (c1)

(a2) (b2) (c2)
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5. CONCLUDING REMARKS

In this research, we proposed a new image prior – the dark-field sparse prior (DSP), and formulated a non-convex model 

to facilitate the quantitative differential phase contrast inverse problem. We use L0-norm to represent the DSP and proposed 

to use HQS method to solve the NP-hard L0-norm problem.  

The DSP is effective because it has lower energy for idea DPC images than for noise-corrupted DPC images. The DSP 

favors the idea DPC images. As shown in Fig. 1(d), the idea DPC image is so sparser than the noise-corrupted DPC image 

that the DPC can simply distinguish the idea DPC image from that of noised DPC image. In this manner, the DSP gives 

lower energy to ideal DPC images, and rectifies the DPC deconvolution. The evolution of the phase output and latent 

image 
nK φ with respective to the iterations are shown in Video 1.

It is worth noting that our proposed dark-field spares prior can be extended beyond the DPC including but not limited 

to Fourier ptychography, and transport of intensity methods since the DSP is also a universal feature for optical images as 

long as dark-field measurements, or similar to dark-field are involved. 

Video 1, Evolution of reconstructed phase pattern (upper row) and the latent image (lower row) with respective to 

iterations. http://dx.doi.org/10.1117/12.2683923.1

The limitation of dsp-qDPC includes the model parameters’ tuning and computational efficiency. (1) Parameter 

should be carefully selected to ensure that no image structure is eliminated by the hard-threshold operation in Eq. (9). An 

appropriate replacement for the hard-threshold operation, such as weighted soft-threshold, can be adopted to avoid such 

shortage. (2) The proposed HQS method involves large amounts of iteration before 0  and 0  reaching the max  and 

max , the computational efficiency is not yet optimized. Using the split Bregman method [14] can further increase the

computational speed of the dsp-qDPC. 
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