155 research outputs found

    Perceptual Image Compression with Cooperative Cross-Modal Side Information

    Full text link
    The explosion of data has resulted in more and more associated text being transmitted along with images. Inspired by from distributed source coding, many works utilize image side information to enhance image compression. However, existing methods generally do not consider using text as side information to enhance perceptual compression of images, even though the benefits of multimodal synergy have been widely demonstrated in research. This begs the following question: How can we effectively transfer text-level semantic dependencies to help image compression, which is only available to the decoder? In this work, we propose a novel deep image compression method with text-guided side information to achieve a better rate-perception-distortion tradeoff. Specifically, we employ the CLIP text encoder and an effective Semantic-Spatial Aware block to fuse the text and image features. This is done by predicting a semantic mask to guide the learned text-adaptive affine transformation at the pixel level. Furthermore, we design a text-conditional generative adversarial networks to improve the perceptual quality of reconstructed images. Extensive experiments involving four datasets and ten image quality assessment metrics demonstrate that the proposed approach achieves superior results in terms of rate-perception trade-off and semantic distortion

    Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions

    Full text link
    Domain invariant learning aims to learn models that extract invariant features over various training domains, resulting in better generalization to unseen target domains. Recently, Bayesian Neural Networks have achieved promising results in domain invariant learning, but most works concentrate on aligning features distributions rather than parameter distributions. Inspired by the principle of Bayesian Neural Network, we attempt to directly learn the domain invariant posterior distribution of network parameters. We first propose a theorem to show that the invariant posterior of parameters can be implicitly inferred by aggregating posteriors on different training domains. Our assumption is more relaxed and allows us to extract more domain invariant information. We also propose a simple yet effective method, named PosTerior Generalization (PTG), that can be used to estimate the invariant parameter distribution. PTG fully exploits variational inference to approximate parameter distributions, including the invariant posterior and the posteriors on training domains. Furthermore, we develop a lite version of PTG for widespread applications. PTG shows competitive performance on various domain generalization benchmarks on DomainBed. Additionally, PTG can use any existing domain generalization methods as its prior, and combined with previous state-of-the-art method the performance can be further improved. Code will be made public

    Progressive Learning with Visual Prompt Tuning for Variable-Rate Image Compression

    Full text link
    In this paper, we propose a progressive learning paradigm for transformer-based variable-rate image compression. Our approach covers a wide range of compression rates with the assistance of the Layer-adaptive Prompt Module (LPM). Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively, which are fed as additional information into the Swin Transformer layer of a pre-trained transformer-based image compression model to affect the allocation of attention region and the bits, which in turn changes the target compression ratio of the model. To ensure the network is more lightweight, we involves the integration of prompt networks with less convolutional layers. Exhaustive experiments show that compared to methods based on multiple models, which are optimized separately for different target rates, the proposed method arrives at the same performance with 80% savings in parameter storage and 90% savings in datasets. Meanwhile, our model outperforms all current variable bitrate image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed bitrate image compression methods trained from scratch

    Exploring the Relationship between Architecture and Adversarially Robust Generalization

    Full text link
    Adversarial training has been demonstrated to be one of the most effective remedies for defending adversarial examples, yet it often suffers from the huge robustness generalization gap on unseen testing adversaries, deemed as the adversarially robust generalization problem. Despite the preliminary understandings devoted to adversarially robust generalization, little is known from the architectural perspective. To bridge the gap, this paper for the first time systematically investigated the relationship between adversarially robust generalization and architectural design. Inparticular, we comprehensively evaluated 20 most representative adversarially trained architectures on ImageNette and CIFAR-10 datasets towards multiple `p-norm adversarial attacks. Based on the extensive experiments, we found that, under aligned settings, Vision Transformers (e.g., PVT, CoAtNet) often yield better adversarially robust generalization while CNNs tend to overfit on specific attacks and fail to generalize on multiple adversaries. To better understand the nature behind it, we conduct theoretical analysis via the lens of Rademacher complexity. We revealed the fact that the higher weight sparsity contributes significantly towards the better adversarially robust generalization of Transformers, which can be often achieved by the specially-designed attention blocks. We hope our paper could help to better understand the mechanism for designing robust DNNs. Our model weights can be found at http://robust.art
    corecore