456 research outputs found

    E-supply Chain\u27s Implementation in a Transit Economy

    Get PDF

    Which Framework is Suitable for Online 3D Multi-Object Tracking for Autonomous Driving with Automotive 4D Imaging Radar?

    Full text link
    Online 3D multi-object tracking (MOT) has recently received significant research interests due to the expanding demand of 3D perception in advanced driver assistance systems (ADAS) and autonomous driving (AD). Among the existing 3D MOT frameworks for ADAS and AD, conventional point object tracking (POT) framework using the tracking-by-detection (TBD) strategy has been well studied and accepted for LiDAR and 4D imaging radar point clouds. In contrast, extended object tracking (EOT), another important framework which accepts the joint-detection-and-tracking (JDT) strategy, has rarely been explored for online 3D MOT applications. This paper provides the first systematical investigation of the EOT framework for online 3D MOT in real-world ADAS and AD scenarios. Specifically, the widely accepted TBD-POT framework, the recently investigated JDT-EOT framework, and our proposed TBD-EOT framework are compared via extensive evaluations on two open source 4D imaging radar datasets: View-of-Delft and TJ4DRadSet. Experiment results demonstrate that the conventional TBD-POT framework remains preferable for online 3D MOT with high tracking performance and low computational complexity, while the proposed TBD-EOT framework has the potential to outperform it in certain situations. However, the results also show that the JDT-EOT framework encounters multiple problems and performs inadequately in evaluation scenarios. After analyzing the causes of these phenomena based on various evaluation metrics and visualizations, we provide possible guidelines to improve the performance of these MOT frameworks on real-world data. These provide the first benchmark and important insights for the future development of 4D imaging radar-based online 3D MOT.Comment: 8 pages, 5 figures, submitted to the 2024 IEEE International Conference on Robotics and Automation (ICRA2024

    Mesenchymal stem cells-derived exosomal miR-653-5p suppresses laryngeal papilloma progression by inhibiting BZW2

    Get PDF
    Objectives: Although miR-653-5p has been validated to participate in the progression of multiple types of cancer, the functional role of exosomal miR-653-5p derived from Mesenchymal Stem Cells (MSCs) in Laryngeal Papilloma (LP) has still remained elusive. Hence, this study aimed to investigate the role of MSCs-derived exosomal miR-653-5p in LP. Methods: LP tissues (n = 15) and adjacent normal tissues (n = 10) were collected to examine the expression level of miR-653-5p. The expression level of miR-653-5p in LP cells and normal cells was also detected. Then, miR-653-5p was overexpressed or silenced to explore its effects on the proliferation, migration, invasion, and apoptosis of LP cells. Thereafter, the effects of exosomal miR-653-5p derived from MSCs on LP cell progression and the potential regulatory mechanism of miR-653-5p were assessed. Results: It was revealed that the expression level of miR-653-5p was downregulated in LP tissues and cells. In addition, miR-653-5p suppressed the proliferation, migration, invasion, and apoptosis of LP cells. Exosomes derived from MSCs played a suppressive role in LP development and mediated the transmission of miR-653-5p to LP cells. Further exploration identified Basic leucine Zipper and W2 domains 2 (BZW2) as the target of miR-653-5p. More importantly, the rescue experiments revealed that MSCs-secreted exosomal miR-653-5p efficiently inhibited the aggressive phenotypes of LP cells, which could be significantly reversed by BZW2 overexpression in LP cells. Conclusion: MSCs-derived exosomal miR-653-5p exerted inhibitory effects on LP progression through targeting BZW2, which provided a novel idea for the therapy of LP. Clinical Trial registration number: chictr-ior-17011021

    Generation of Sst-P2a-Mcherry Reporter Human Embryonic Stem Cell Line Using the Crispr/cas9 System (WAe001-A-2C)

    Get PDF
    Somatostatin (SST)-producing pancreatic delta-cells play an important role in maintaining the balance of insulin and glucagon secretion within the islets. This study aimed to generate a human embryonic stem cell (hESC) line with a SST-P2A-mCherry reporter using CRISPR/Cas9 system. The SST-P2A-mCherry reporter cell line was shown to maintain typical pluripotent characteristics and able to be induced into SST-producing pancreatic delta-cells. The generation of the cell line would provide useful platform for the characterization of stem cell-derived delta-cells, discovery of delta-cell surface markers and investigation of paracrine mechanisms, which will ultimately promote the drug discovery and cell therapy of diabetes mellitus

    Distributed Online Convex Optimization with Adversarial Constraints: Reduced Cumulative Constraint Violation Bounds under Slater's Condition

    Full text link
    This paper considers distributed online convex optimization with adversarial constraints. In this setting, a network of agents makes decisions at each round, and then only a portion of the loss function and a coordinate block of the constraint function are privately revealed to each agent. The loss and constraint functions are convex and can vary arbitrarily across rounds. The agents collaborate to minimize network regret and cumulative constraint violation. A novel distributed online algorithm is proposed and it achieves an O(Tmax{c,1c})\mathcal{O}(T^{\max\{c,1-c\}}) network regret bound and an O(T1c/2)\mathcal{O}(T^{1-c/2}) network cumulative constraint violation bound, where TT is the number of rounds and c(0,1)c\in(0,1) is a user-defined trade-off parameter. When Slater's condition holds (i.e, there is a point that strictly satisfies the inequality constraints), the network cumulative constraint violation bound is reduced to O(T1c)\mathcal{O}(T^{1-c}). Moreover, if the loss functions are strongly convex, then the network regret bound is reduced to O(log(T))\mathcal{O}(\log(T)), and the network cumulative constraint violation bound is reduced to O(log(T)T)\mathcal{O}(\sqrt{\log(T)T}) and O(log(T))\mathcal{O}(\log(T)) without and with Slater's condition, respectively. To the best of our knowledge, this paper is the first to achieve reduced (network) cumulative constraint violation bounds for (distributed) online convex optimization with adversarial constraints under Slater's condition. Finally, the theoretical results are verified through numerical simulations

    The corneal biomechanical changes after SMILE and LASIK refractive surgery were compared based on finite element analysis

    Get PDF
    The three-dimensional (3D) finite element model of human eye was established, and the intraocular pressure (IOP) was loaded to simulate refractive surgery. The biomechanical properties of human cornea after SMILE and LASIK surgery were studied from the stress, strain and induced wavefront aberration. Our results showed that SMILE had less impact on the biomechanics, having less stress and strain changes than LASIK. However, the stress and strain of the cornea increased with the increase of the diopter and were concentrated in the central region. We also investigated the changes in wavefront aberrations of the cornea after surgery, and the results indicated that the defocus and vertical commotion were significantly affected by SMILE and LASIK surgery, while the remaining aberrations were approximately unchanged. In conclusion, both SMILE and LASIK sergury procedures changed the postoperative corneal biomechanics, but SMILE had less impact on the biomechanics of corneal
    corecore