10 research outputs found

    Reproductive capability in dogs with canine leukocyte adhesion deficiency treated with nonmyeloablative conditioning prior to allogeneic hematopoietic stem cell transplantation

    No full text
    Nonmyeloablative conditioning regimens are increasingly replacing myeolablative conditioning prior to allogeneic hematopoietic stem cell transplantation (SCT). The recent advent of these conditioning regimens has limited the assessment of the long-term effects of this treatment, including analysis of reproductive function. To address the question of reproductive function after nonmyeloablative transplantation, we analyzed a cohort of young dogs with the genetic disease canine leukocyte adhesion deficiency that were treated with a nonmyeloablative dose of 200 cGy total body irradiation followed by matched-littermate SCT. Five males and 5 females entered puberty; all 5 males and 4 females subsequently sired or delivered litters following transplantation. We demonstrate that fertility is intact and dogs have uncomplicated parturitions following nonmyeloablative conditioning for SCT. These results are encouraging for children and adults of childbearing age who receive similar conditioning regimens prior to allogeneic transplantation

    Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy

    No full text
    Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent, life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens—200 cGy total body irradiation (TBI) or 10 mg/kg busulfan—with or without posttransplantation immunosuppression. In 6 of 11 treated CLAD dogs, therapeutic levels of CD18+ leukocytes were achieved. Conditioning with either TBI or busulfan allowed long-term engraftment, and immunosuppression was not required for efficacy. The percentage of CD18+ leukocytes in the peripheral blood progressively increased over 6 to 8 months after infusion to levels ranging from 1.26% to 8.37% at 1-year follow-up in the 6 dogs. These levels resulted in reversal or moderation of the severe CLAD phenotype. Linear amplification–mediated polymerase chain reaction assays indicated polyclonality of insertion sites. These results describe ex vivo hematopoietic stem cell gene transfer in a disease-specific, large animal model using 2 clinically applicable conditioning regimens, and they provide support for the use of nonmyeloablative conditioning regimens in preclinical protocols of retroviral-mediated gene transfer for nonmalignant hematopoietic diseases such as LAD

    Gene Therapy for Canine Leukocyte Adhesion Deficiency with Lentiviral Vectors Using the Murine Stem Cell Virus and Human Phosphoglycerate Kinase Promoters

    No full text
    Children with leukocyte adhesion deficiency type 1 (LAD-1) and dogs with canine LAD (CLAD) develop life-threatening bacterial infections due to mutations in the leukocyte integrin CD18. Here, we compared the human phosphoglycerate kinase (hPGK) promoter to the murine stem cell virus (MSCV) promoter/enhancer in a self-inactivating HIV-1–derived lentiviral vector to treat animals with CLAD. Four CLAD dogs were infused with CD34+ cells transduced with the hPGK vector, and two CLAD dogs received MSCV vector–transduced CD34+ cells. Infusions were preceded by a nonmyeloablative dose of 200 cGy total body irradiation. Comparable numbers of transduced cells were infused in each group of animals. Only one of four CLAD animals treated with the hPGK-cCD18 vector had reversal of CLAD, whereas both MSCV-cCD18 vector–treated dogs had reversal of the phenotype. Correction of CLAD depends both upon the percentage of CD18+ myeloid cells and the level of expression of CD18 on individual myeloid cells. In this regard, the hPGK promoter directed low levels of expression of CD18 on neutrophils compared to the MSCV promoter, likely contributing to the suboptimal clinical outcome with the hPGK vector

    InlA Promotes Dissemination of <em>Listeria monocytogenes</em> to the Mesenteric Lymph Nodes during Food Borne Infection of Mice

    Get PDF
    <div><p>Intestinal <em>Listeria monocytogenes</em> infection is not efficient in mice and this has been attributed to a low affinity interaction between the bacterial surface protein InlA and E-cadherin on murine intestinal epithelial cells. Previous studies using either transgenic mice expressing human E-cadherin or mouse-adapted <em>L. monocytogenes</em> expressing a modified InlA protein (InlA<sup>m</sup>) with high affinity for murine E-cadherin showed increased efficiency of intragastric infection. However, the large inocula used in these studies disseminated to the spleen and liver rapidly, resulting in a lethal systemic infection that made it difficult to define the natural course of intestinal infection. We describe here a novel mouse model of oral listeriosis that closely mimics all phases of human disease: (1) ingestion of contaminated food, (2) a distinct period of time during which <em>L. monocytogenes</em> colonize only the intestines, (3) varying degrees of systemic spread in susceptible vs. resistant mice, and (4) late stage spread to the brain. Using this natural feeding model, we showed that the type of food, the time of day when feeding occurred, and mouse gender each affected susceptibility to <em>L. monocytogenes</em> infection. Co-infection studies using <em>L. monocytogenes</em> strains that expressed either a high affinity ligand for E-cadherin (InlA<sup>m</sup>), a low affinity ligand (wild type InlA from <em>Lm</em> EGDe), or no InlA (Δ<em>inlA</em>) showed that InlA was not required to establish intestinal infection in mice. However, expression of InlA<sup>m</sup> significantly increased bacterial persistence in the underlying lamina propria and greatly enhanced dissemination to the mesenteric lymph nodes. Thus, these studies revealed a previously uncharacterized role for InlA in facilitating systemic spread via the lymphatic system after invasion of the gut mucosa.</p> </div
    corecore