8 research outputs found

    Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors

    Full text link
    [EN] BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d5/2) and Eu2+(3d3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f65d1 → 4f7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.The authors gratefully recognize the financial support from the University Grant Commission (UGC), New Delhi [MRP-40-73/2011(SR)] and the European Commission through Nano CIS project (FP7-PEOPLE-2010-IRSES ref. 269279).Singh, D.; Tanwar, V.; Simantilke, AP.; Marí, B.; Kadyan, PS.; Singh, I. (2016). Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors. Journal of Materials Science: Materials in Electronics. 27(3):2260-2266. https://doi.org/10.1007/s10854-015-4020-1S22602266273J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho, G.C. Kim, Appl Phys Lett 84, 2931 (2004)D. Jia, D.N. Hunter, J Appl Phys 100, 1131251 (2006)H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, E. Toba, Rev Sci Instrum 74, 1344 (2003)C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Watanabe, Appl Phys Lett 76, 179 (2000)C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Adv Funct Mater 13, 511 (2004)P.J. Saines, M.M. Elcombe, B.J. Kennedy, J Solid State Chem 179, 613 (2006)R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, J Lumin 85, 149 (1999)T. Aitasalo, P. Deren, J Solid State Chem 171, 114 (2003)S. Nakamura, T. Mukai, M. Senoh, J Appl Phys 76, 8189 (1994)S.H.M. Poort, G. Blasse, J Lumin 72, 247 (1997)P. Mingying, H. Guangyan, J Lumin 127, 735 (2007)X. Linjiu, H. Mingrui, T. Yanwen, C. Yongjie, K. Tomoaki, Z. Liqing, W. Ning, Jap J Applied Physics 46, 5871 (2007)T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, J Phys Chem B 110, 4589 (2006)R. Stefani, L.C.V. Rodrigues, C.A.A. Carvalho, M.C.F.C. Felinto, H.F. Brito, M. Lastusaari, J. Hölsä, Opt Mater 31, 1815 (2009)M. Peng, G. Hong, J Lumin 127, 735 (2007)V. Singh, V. Natarajan, J.J. Zhu, Opt Mater 29, 1447 (2007)X.Y. Chen, C. Ma, X.X. Li, C.W. Shi, X.L. Li, D.R. Lu, J Phys Chem C 113, 2685 (2009)A.J. Zarur, J.Y. Ying, Nature 403, 65 (2000)J. Chen, F. Gu, C. Li, Cry Growth Des 8, 3175 (2008)J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, L. Peng, Mater Res Bull 47, 247 (2012)P. Maślankiewicz, J. Szade, A. Winiarski, Ph Daniel, Cryst Res Technol 40, 410 (2005)Y.J. Chen, G.M. Qiu, Y.B. Sun et al., J Rare Earths 20, 50 (2002)F.C. Palilla, A.K. Levine, M.R. Tomkus, J Electrochem Soc 115, 642 (1968)J. Niittykoski, T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, M. Parkkinen, M. Tukia, J Alloys Compd 374, 108 (2004)A. Nag, T.R.N. Kutty, J Alloys Compd 354, 221 (2003)D. Haranath, P. Sharma, H. Chander, J Phys D Appl Phys 38, 371 (2005

    Optoelectronic characterization of zinc complexes for display device applications

    No full text
    2-(2-Pyridyl)benzimidazolato)-2-methyl-8-hydroxyquinolinatozinc(II)[ZnPBI(Meq)], 2-(2-pyridyl)benzimidazolato)-5-chloro-8-hydroxyquinolinatozinc(II) [ZnPBI(Clq)] and 2-(2-pyridyl)benzimidazolato)-8-hydroxyquinolinatozinc(II) [ZnPBI(q)] were synthesized and characterized for the purpose to be used as electroluminescent materials. All complexes emitted bright colored light on excitation by ultra-violet light source which showed their suitability for the operation in opto-electronic devices. Using a selected complex [ZnPBI(Meq)] as emissive layer, multilayered organic electroluminescent device was fabricated having structure ITO/alpha-NPD/Zinc complex/BCP/Alq(3)/LiF/Al, that produced bright bluish green emission at 532 nm. Maximum luminescence observed was 4038 cd/m(2) at 18 V while the turn on voltage of the device was 7 V. The Commission Internationale d'Eclairage chromaticity of the device had color coordinates at x = 0.35, y = 0.44 and was found to be independent of the operating voltages. The [ZnPBI(Meq)] complex exhibited high thermal stability (> 300 A degrees C) and high glass transition temperature (> 150 A degrees C)

    Preparation and Photoluminescence Properties of SrAl2O4:Eu2+,RE3+ Green Nanophosphors for Display Device Applications

    Full text link
    [EN] An efficient rapid gel combustion process was used to prepare divalent-eu- ropium-doped strontium aluminate (SrAl2O4:Eu2+/Eu2+,Dy3+/Eu2+,Dy3+,Nd3+) nanophosphors in the presence of boron flux in air. The prepared nanophos- phors emitted green light at 507 nm upon excitation at 360 nm. The emission of green light was observed due to the 4f65d1 fi 4f7 transition of Eu2+ ions. The absence of the characteristic sharp emission peak at 612 nm for Eu3+ (5D0 fi 7F2) indicates that efficient reduction of Eu3+ to Eu2+ occurred in the presence of the boron flux (H3BO3) as reducing agent. The x-ray diffraction pattern suggested monoclinic crystallinity, while transmission electron mi- croscopy revealed the average size of the prepared materials to be between 20 nm and 50 nm. Coactivators in the lattices such as Dy3+ alone or Dy3+ with "Nd3+ produced long persistence and enhancement of the optoelectronic prop- erties of the prepared materials.The authors gratefully recognize the financial support from the University Grant Commission (UGC), New Delhi [MRP-40-73/2011(SR)] and European Commission through Nano CIS Project (FP7-PEOPLE-2010-IRSES ref. 269279).Singh, D.; Tanwar, V.; Samantilleke, AP.; Marí, B.; Bhagwan, S.; Kadyan, PS.; Singh, I. (2016). Preparation and Photoluminescence Properties of SrAl2O4:Eu2+,RE3+ Green Nanophosphors for Display Device Applications. Journal of Electronic Materials. 45(6):2718-2724. https://doi.org/10.1007/s11664-015-4318-zS27182724456C. Chang, L. Jiang, D. Mao, and C. Feng, Ceram. Int. 30, 285 (2004).C. Chang, D. Mao, J. Shen, and C. Feng, J. Alloys Compd. 348, 224 (2003).T. Katsumata, T. Nabae, K. Sasajima, S. Kumuro, and T. Morikawa, J. Electrochem. Soc. 144, L243 (1997).Y. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa, US Patent No. 5 424 (1995) 006.P.D. Sarkisov, N.V. Popovich, and A.G. Zhelnin, Glass Ceram. 60, 309 (2003).S.K. Yesilay, B. Karasu, G. Kaya, and E. Karacaoglu, Adv. Sci. Technol. 62, 88 (2010).A. Nag and T.R.N. Kutty, J. Alloys Compd. 354, 221 (2003).T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996).K.V.D. Eeckhout, P.F. Smet, and D. Poelman, Materials 3, 2536 (2010).M. Lastusaari, H.F. Brito, S. Carlson, J. Hölsä, T. Laamanen, L.C.V. Rodrigues, and E. Welter, Phys. Scr. 89, Article ID 044004 (2014).J. Botterman, J.J. Joos, and P.F. Smet, Phys. Rev. B 90, Article ID 085147 (2014).D. Jia, Opt. Mater. 22, 65 (2003).C.H. Lu, W.T. Hsu, C.H. Huang, S.V. Godbole, and B.M. Cheng, Mater. Chem. Phys. 90, 62 (2005).Y.H. Lin, Z.T. Zhang, F. Zhang, Z.L. Tang, and Q.M. Chen, Mater. Chem. Phys. 65, 103 (2000).S.D. Han, K.C. Singh, T.Y. Cho, H.S. Lee, D. Jakhar, J.P. Hulme, C.H. Han, J.D. Kim, I.S. Chun, and J. Gwak, J. Lumin. 128, 301 (2008).W. Jia, H. Yuan, L. Lu, H. Liu, and W.M. Yen, J. Lumin. 76–77, 424 (1998).S.Y. Kaya, E. Karacaoglu, and B. Karasu, Ceram. Int. 38, 3701 (2012).I.C. Chen and T.M. Chen, J. Mater. Res. 16, 644 (2001).J. Holsa, H. Jungner, M. Lastusaari, and J. Niittykoski, J. Alloys Compd. 323–324, 326 (2001).L. Xiao, S. Meng, Z. Junying, and W. Tianmin, J. Rare Earths 28, 150 (2010).T.Y. Peng, H.J. Liu, H.P. Yang, and C.H. Yan, Mater. Chem. Phys. 85, 68 (2004).W. Suli, Z. Shufen, and Y. Jinzong, Mater. Chem. Phys. 102, 80 (2007).C.K. Chang, Z.X. Yuan, and D.L. Mao, J. Alloys Compd. 415, 220 (2006).S.V. Gabelkov, R.V. Tarasov, N.S. Poltavtsev, Y.P. Kurilo, M.P. Starolat, N.F. Andrievskaya, A.G. Mironova, E.G. Ledovskaya, L.M. Litvinenko, and F.V. Belkin, Inorg. Mater. 43, 398 (2007).J.S. Kim, J. Ceram. Process. Res. 10, 443 (2009).X.U.E. Zhiping, D.E.N.G. Suqing, L.I.U. Yingliang, L.E.I. Bingfu, X.I.A.O. Yong, and Z.H.E.N.G. Mingtao, J. Rare Earths 31, 241 (2013).C.H. Lu, S.Y. Chen, and C.H. Hsu, Mater. Sci. Eng. B 140, 218 (2007).T.Y. Peng, H.P. Yang, X.L. Pu, B. Hu, Z.C. Jiang, and C.H. Yan, Mater. Lett. 58, 352 (2004).Z.L. Fu, S.H. Zhou, Y.N. Yu, and S.Y. Zhang, Chem. Phys. Lett. 395, 285 (2004).D.S. Kshatri, A. Khare, and P. Jha, Chalcogenide Lett. 10, 121 (2013).T.T. Lai, C.C. Chang, C.Y. Yang, S. Das, and C.H. Lu, Ceram. Int. 39, 159 (2013).D. Singh, V. Tanwar, S. Bhagwan, A.P. Simantilleke, I. Singh, and P.S. Kadyan, Adv. Sci. Lett. 20, 1531 (2014).S.D. Han, C.H. Han, I. Singh, and D. Singh, Ind. J. Chem. 43A, 2542 (2004).S. Ekambaram, K.C. Patil, and M. Maaza, J. Alloys Compd. 393, 81 (2005).F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, and T. Le Mercier, Chem. Mater. 17, 3904 (2005).D. Haranath, V. Shanker, H. Chander, and P. Sharma, J. Phys. D Appl. Phys. 36, 2244 (2003).I.C. Chen and T.M. Chen, J. Mater. Res. 16, 1293 (2001).J. Chen, F. Gu, and C. Li, Cryst. Growth Des. 8, 3175 (2008).W.B. Im, J.H. Kang, D.C. Lee, S. Lee, D.Y. Jeon, Y.C. Kang, and K.Y. Jung, Solid State Commun. 133, 197 (2005).J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, Mater. Res. Bull. 47, 247 (2012).C. Zhu, Y. Yang, X. Liang, S. Yuan, and G. Chen, J. Am. Ceram. Soc. 90, 2984 (2007).J. Niittykoski, T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, M. Parkkinen, and M. Tukia, J. Alloys Compd. 374, 108 (2004).Z. Pei, Q. Zeng, and Q. Su, J. Phys. Chem. Solids 61, 9 (2000).K. Machida, G. Adachi, and J. Shiokawa, J. Lumin. 21, 101 (1979).R. Pang, C. Li, L. Shi, and Q. Su, J. Phys. Chem. Solids 70, 303 (2009).C.H. Huang and T.M. Chen, Opt. Express 18, 5089 (2010).G. Lee, W.B. Im, A. Kirakosyan, S.H. Cheong, J.Y. Han, and D.Y. Jeon, Opt. Express 21, 3287 (2013).D.S. Kshatri, A. Khare, and P. Jha, Optik 124, 2974 (2013)

    Synthesis and Optical Characterization of Mixed Ligands Beryllium Complexes for Display Device Applications

    No full text
    Synthesis and photoluminescent behaviour of mixed ligand based beryllium complexes with 2-(2-hydroxyphenyl)benzoxazole (HPB) and 5-chloro-8-hydroxyquinoline (Clq) or 5,7-dichloro-8-hydroxyquinoline (Cl2q) or 2-methyl-8-hydroxyquinoline (Meq) or 8-hydroxyquinoline (q) are reported in this work. These complexes, that is, [BeHPB(Clq)], [BeHPB(Cl2q)], [BeHPB(Meq)], and [BeHPB(q)], were prepared and their structures were confirmed by elemental analysis, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermal analysis. The beryllium complexes exhibited good thermal stability up to ~300°C temperature. The photophysical properties of beryllium complexes were studied using ultraviolet-visible absorption and photoluminescence emission spectroscopy. The complexes showed absorption peaks due to π-π∗ and n-π∗ electronic transitions. The complexes emitted greenish blue light with peak wavelength at 496 nm, 510 nm, 490 nm, and 505 nm, respectively, consisting of high intensity. Color tuning was observed with changing the substituents in quinoline ring ligand in metal complexes. The emitted light had Commission Internationale d’Eclairage color coordinates values at x=0.15 and y=0.43 for [BeHPB(Clq)], x=0.21 and y=0.56 for [BeHPB(Cl2q)], x=0.14 and y=0.38 for [BeHPB(Meq)], x=0.17 and y=0.41 for [BeHPB(q)]. Theoretical calculations using DFT/B3LYP/6-31G(d,p) method were performed to reveal the three-dimensional geometries and the frontier molecular orbital energy levels of these synthesized metal complexes

    Synthesis of Sr(1-x-y)Al4O7:Eux2+, Lny3+ (Ln= Dy, Y, Pr) Nanophosphors Using Rapid Gel Combustion Process and Their Down Conversion Characteristics

    Full text link
    [EN] Eu2+ and Eu2++Ln3+ doped SrAl4O7 nanophosphors were synthesized by rapid gel combustion process. The morphology of prepared phosphors was examined with scanning and transmission electron microscopy. The phase identification and the crystal structures of nanophosphors were studied using X-ray powder diffraction techniques. Luminescence characteristics of the prepared nanophosphors were analyzed on account of excitation, emission and phosphorescence decay analysis. The emission spectra demonstrated the broad green emission attributed to 4f65d1→ 4f7 transition of the Eu2+ ions. The effect of codoping of some trivalent lanthanide (Dy3+, Pr3+ and Y3+) ions were investigated for improving the emission intensity and phosphorescence decay time of the basic lattice of SrAl4O7:Eu2+ phosphors. The synthesized materials had enhanced bright luminescent properties that could suitably be applied for display as well as photovoltaic applications. Devender Singh, Vijeta Tanwar, Anura P. Samantilleke, Bernabe Mari, Shri Bhagwan, Krishan C. Singh, Pratap S. Kadyan, Ishwar SinghThe authors thankfully recognize the financial support from the University Grant Commission (UGC), New Delhi [MRP-40-73/2011(SR)] and the European Commission through Nano CIS project (FP7-PEOPLE-2010-IRSES ref. 269279).Singh, D.; Tanwar, V.; Samantilleke, AP.; Marí, B.; Bhagwan, S.; Singh, KC.; Kadyan, PS.... (2017). Synthesis of Sr(1-x-y)Al4O7:Eux2+, Lny3+ (Ln= Dy, Y, Pr) Nanophosphors Using Rapid Gel Combustion Process and Their Down Conversion Characteristics. Electronic Materials Letters. 13(3):222-229. doi:10.1007/s13391-017-6038-4S222229133B. Zhang, C. Zhao, and D. Chen, J. Bio. Chem. Lumin. 25, 25 (2010).A. Nag and T. R. N. Kutty, J. Alloys Compd. 354, 221 (2003).S. H. Choi, N. H. Kim, Y. H. Yun, and S. C. Choi, J. Ceram. Process. Res. 7, 62 (2006).B. M. Smets, Mater. Chem. Phys. 16, 283 (1987).C. R. Ronda, J. Lumin. 72-74, 49 (1997).V. Chernov, T. M. Piters, R. Melendrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barboza-Flores, Radiat. Meas. 42, 668 (2007).S. Chawla, N. Kumar, and H. Chander, J. Lumin. 129, 114 (2009).T. Hatayama, S. Fukumoto, and S. Ibuki, Jpn. J. Appl. Phys. 31, 3383 (1992).O. A. Lopez, J. McKittrick, and L. E. Shea, J. Lumin. 71, 1 (1997).H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, and J. H. Jeong, J. Korean Phys. Soc. 52, 116 (2008).T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, J. Am. Ceram. Soc. 81, 413 (1998).R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, J. Lumin. 85, 149 (1999).V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, Opt. Mater. 30, 446 (2007).X. M. Teng, W. D. Zhuang, and H. Q. He, Rare Metals 27, 335 (2008).C. Zhao and D. Chen, Mater. Lett. 61, 3673 (2007).Y. Lin, Z. Tang, Z. Zhang, and C. Nan, J. Eur. Ceram. Soc. 23, 175 (2003).D. Singh, V. Tanwar, A. P. Simantilleke, B. Mari, P. S. Kadyan, and I. Singh, Adv. Mater. Lett. 7, 47 (2016).D. Singh, V. Tanwar, A. P. Simantilleke, B. Mari, S. Bhagwan, P. S. Kadyan, and I. Singh, J. Electron. Mater. 45, 2718 (2016).J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, Appl. Phys. Lett. 77, 2162 (2000).M. Gu, L. Xiao, X. Liu, R. Zhang, B. Liu, and X. Xu, J. Alloys Compd. 426, 390 (2006).L. Wanga and Y. Wang, J. Lumin. 122, 921 (2007).C. Cai, P. Wen, L. Hao, and X. Xu, Mater. Res. Bull. 55, 156 (2014).S. Unithrattil, K. H. Lee, and W. B. Im, J. Am. Ceram. Soc. 97, 874 (2014).H. Yamamoto and T. Matsuzawa, J. Lumin. 72-74, 287 (1997).S. Ekambaram and K. C. Patil, J. Alloys Compd. 248, 7 (1997).J. Chen, F. Gu, and C. Li, Cry. Growth Des. 8, 3175 (2008).G. I. Akmehmet, S. Sturm, L. Bocher, M. Kociak, B. Ambrozic, and C. W. O. Yang, J. Am. Ceram. Soc. 99, 2175 (2016).K. D. Giras, J. Nano-Electron. Phys. 5, 03013 (2013).S. Suri, K. K. Bamzai, and V. Singh, J. Therm. Anal. Calorim. 105, 229 (2011).S. J. Joshi, B. B. Parekh, K. D. Vohra, and M. J. Joshi, Bull. Mater. Sci. 29, 307 (2006).I. Quasim, A. Firdous, N. Sahni, S. K. Khosa, and P. N. Kotru, Cryst. Res. Technol. 44, 539 (2009).S. M. Lee, T. Ito, and H. Murakami, Proc. Annual Autumn Conference on the Korea Institute of Electrical and Electronic Material Engineers, p. 705, Seoul, Republic of Korea (2003).W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, Solid State Commun. 133, 197 (2005).J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, Mater. Res. Bull. 47, 247 (2012).P. MaÅ›lankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, Cryst. Res. Technol. 40, 410 (2005).D. Singh, V. Tanwar, A. P. Simantilleke, B. Mari, P. S. Kadyan, and I. Singh, J. Mater. Sci. Mater. Electron. 27, 2260 (2016).T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, UK (1958).C. Zhu, Y. Yang, X. Liang, S. Yuan, and G. Chen, J. Am. Ceram. Soc. 90, 2984 (2007).F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, Chem. Mater. 7, 3904 (2005).Q. Zeng, Z. Pei, and Q. Su, J. Alloys Compd. 275, 238 (1998).H. Zeng, Y. Yang, Z. Lin, X. Liang, S. Yuan, G. Chen, and L. Sun, J. Non-Cryst. Solids 357, 2328 (2011).B. Liu, Y. Wang, J. Zhou, F. Zhang, and Z. Wang, J. Appl. Phys. 106, 053102-1 (2009).I. C. Chen and T. M. Chen, J. Mater. Res. 16, 644 (2001).A. Jain, A. Kumar, S. J. Dhoble, and D. R. Peshwe, Renew. Sustainable Energy Rev. 65, 135 (2016).Y. Li, M. Gecevicius, and J. Qiu, Chem. Soc. Rev. 45, 2090 (2016).Y. L. Chang, H. I. Hsiang, and M. T. Liang, J. Alloys Compd. 461, 598 (2008).F. M Emen, N. Külcü, and A. N. Yazici, Eur. J. Chem. 1, 28 (2010).J. S. Bae, J. H. Jeong, S. S. Yi, and J. C. Park, Appl. Phys. Lett. 82, 3629 (2003).P. Dorenbos, Phys. Status Solidi 242, R7 (2005).J. Zhang, J. Lin, J. Wu, S. Zhang, P. Zhou, X. Chen, and R. Xu, J. Mater. Sci. Mater. Electron. 27, 1350 (2016)
    corecore