2 research outputs found

    Hyaluronan Polymer Length, Grafting Density, and Surface Poly(ethylene glycol) Coating Influence <i>in Vivo</i> Circulation and Tumor Targeting of Hyaluronan-Grafted Liposomes

    No full text
    Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells <i>in vitro via</i> receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5โ€“8, 50โ€“60, and 175โ€“350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175โ€“350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5โ€“8, 50โ€“60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability <i>in vivo</i>. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of <i>ex vivo</i> tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery
    corecore