632 research outputs found
Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-Dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo
We propose the Galactic flare model for the origin of the X-ray gas in the
Galactic halo. For this purpose, we examine the magnetic reconnection triggered
by Parker instability (magnetic buoyancy instability), by performing the
two-dimensional resistive numerical magnetohydrodynamic simulations. As a
result of numerical simulations, the system evolves as following phases: Parker
instability occurs in the Galactic disk. In the nonlinear phase of Parker
instability, the magnetic loop inflates from the Galactic disk into the
Galactic halo, and collides with the anti-parallel magnetic field, so that the
current sheets are created in the Galactic halo. The tearing instability
occurs, and creates the plasmoids (magnetic islands). Just after the plasmoid
ejection, further current-sheet thinning occurs in the sheet, and the anomalous
resistivity sets in. Petschek reconnection starts, and heats the gas quickly in
the Galactic halo. It also creates the slow and fast shock regions in the
Galactic halo. The magnetic field (G), for example, can heat the
gas ( cm) to temperature of K via the
reconnection in the Galactic halo. The gas is accelerated to Alfv\'en velocity
( km s). Such high velocity jets are the evidence of the
Galactic flare model we present in this paper, if the Doppler shift of the
bipolar jet is detected in the Galactic halo. Full size figures are available
at http://www.kwasan.kyoto-u.ac.jp/~tanuma/study/ApJ2002/ApJ2002.htmlComment: 13 pages, 12 figures, uses emulateapj.sty, accepted by Ap
Odd-frequency pairing in normal metal/superconductor junctions
We study the induced odd-frequency pairing states in ballistic normal
metal/superconductor (N/S) junctions where a superconductor has even-frequency
symmetry in the bulk and a normal metal layer has an arbitrary length. Using
the quasiclassical Green's function formalism, we demonstrate that, quite
generally, the pair amplitude in the junction has an admixture of an
odd-frequency component due to the breakdown of translational invariance near
the N/S interface where the pair potential acquires spatial dependence. If a
superconductor has even-parity pair potential (spin-singlet s-wave state), the
odd-frequency pairing component with odd-parity is induced near the N/S
interface, while in the case of odd-parity pair potential (spin-triplet
-wave or spin-singlet -wave) the odd-frequency component with
even-parity is generated. We show that in conventional s-wave junctions, the
amplitude of the odd-frequency pairing state is enhanced at energies
corresponding to the peaks in the local density of states (LDOS). In - and
-wave junctions, the amplitude of the odd-frequency component on the S
side of the N/S interface is enhanced at zero energy where the midgap Andreev
resonant state (MARS) appears due to the sign change of the pair potential. The
odd-frequency component extends into the N region and exceeds the
even-frequency component at energies corresponding to the LDOS peak positions,
including the MARS.Comment: 27 pages, 12 figure
Self-similar solution of fast magnetic reconnection: Semi-analytic study of inflow region
An evolutionary process of the fast magnetic reconnection in ``free space''
which is free from any influence of outer circumstance has been studied
semi-analytically, and a self-similarly expanding solution has been obtained.
The semi-analytic solution is consistent with the results of our numerical
simulations performed in our previous paper (see Nitta et al. 2001). This
semi-analytic study confirms the existence of self-similar growth. On the other
hand, the numerical study by time dependent computer simulation clarifies the
stability of the self-similar growth with respect to any MHD mode. These
results confirm the stable self-similar evolution of the fast magnetic
reconnection system.Comment: 15 pages, 7 figure
Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy
We study how the multiplicity of the Fermi surface affects the zero-bias peak
in conductance spectra of tunneling spectroscopy. As case studies, we consider
models for organic superconductors -(BEDT-TTF)Cu(NCS) and
(TMTSF)ClO. We find that multiplicity of the Fermi surfaces can lead to
a splitting of the zero-bias conductance peak (ZBCP). We propose that the
presence/absence of the ZBCP splitting is used as a probe to distinguish the
pairing symmetry in -(BEDT-TTF)Cu(NCS).Comment: 7 pages, 7 figure
Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions
Tunneling conductance in ferromagnet / unconventional superconductor
junctions is studied theoretically as a function of temperatures and
spin-polarization in feromagnets. In d-wave superconductor junctions, the
existence of a zero-energy Andreev bound state drastically affects the
temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet
superconductor junctions, numerical results show a wide variety in
temperature-dependence of the ZBC depending on the direction of the magnetic
moment in ferromagnets and the pairing symmetry in superconductors such as
, and -wave pair potential. The last one is a
promising symmetry of SrRuO. From these characteristic features in the
conductance, we may obtain the information about the degree of
spin-polarization in ferromagnets and the direction of the -vector in
triplet superconductors
Layer dependent band dispersion and correlations using tunable Soft X-ray ARPES
Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study
in-plane band dispersions of Nickel as a function of probing depth. Photon
energies between 190 and 780 eV were used to effectively probe up to 3-7
layers. The results show layer dependent band dispersion of the Delta_2
minority-spin band which crosses the Fermi level in 3 or more layers, in
contrast to known top 1-2 layers dispersion obtained using ultra-violet rays.
The layer dependence corresponds to an increased value of exchange splitting
and suggests reduced correlation effects in the bulk compared to the surface.Comment: 7 pages, 3 figures Revised text and figur
Electronic structures of CeRu ( = Si, Ge) in the paramagnetic phase studied by soft X-ray ARPES and hard X-ray photoelectron spectroscopy
Soft and hard X-ray photoelectron spectroscopy (PES) has been performed for
one of the heavy fermion system CeRuSi and a -localized ferromagnet
CeRuGe in the paramagnetic phase. The three-dimensional band structures
and Fermi surface (FS) shapes of CeRuSi have been determined by soft
X-ray -dependent angle resolved photoelectron spectroscopy (ARPES). The
differences in the Fermi surface topology and the non- electronic
structures between CeRuSi and CeRuGe are qualitatively
explained by the band-structure calculation for both itinerant and
localized models, respectively. The Ce valences in CeRu ( = Si, Ge)
at 20 K are quantitatively estimated by the single impurity Anderson model
calculation, where the Ce 3d hard X-ray core-level PES and Ce 3d X-ray
absorption spectra have shown stronger hybridization and signature for the
partial contribution to the conduction electrons in CeRuSi.Comment: 8figure
Fractional ac Josephson effect in unconventional superconductors
For certain orientations of Josephson junctions between two p_x-wave or two
d-wave superconductors, the subgap Andreev bound states produce a 4pi-periodic
relation between the Josephson current I and the phase difference phi: I ~
sin(phi/2). Consequently, the ac Josephson current has the fractional frequency
eV/h, where V is the dc voltage. In the tunneling limit, the Josephson current
is proportional to the first power (not square) of the electron tunneling
amplitude. Thus, the Josephson current between unconventional superconductors
is carried by single electrons, rather than by Cooper pairs. The fractional ac
Josephson effect can be observed experimentally by measuring frequency spectrum
of microwave radiation from the junction.Comment: 8 pages, 3 figures, RevTEX 4; v2. - minor typos corrected in proof
- …