2,153 research outputs found

    Application of Computational Chemical Shift Prediction Techniques to the Cereoanhydride Structure Problem-Carboxylate Complications.

    Get PDF
    Despite the vast array of techniques available to modern-day chemists, structural misassignments still occur. These misassignments are often only realized upon attempted synthesis, when the spectra of synthesized products do not match previously reported spectra. This was the case with marine natural product cereoanhydride. The originally proposed 7-membered ring anhydride (1) was shown to be incorrect, although a likely precursor to the correct structure (2) in both its laboratory synthesis and biosynthesis. Herein, in addition to showing how NMR computations could have been used to arrive at the correct structure, we show that the conversion of 1 to 2 is indeed energetically viable, and we highlight complications in predicting NMR chemical shifts for molecules with acidic protons

    Mechanistically informed predictions of binding modes for carbocation intermediates of a sesquiterpene synthase reaction.

    Get PDF
    Sesquiterpenoids comprise a class of terpenoid natural products with thousands of compounds that are highly diverse in structure, generally containing a polycyclic carbon backbone that is constructed by a sesquiterpene synthase. Decades of experimental and computational studies have demonstrated that these enzymes generate a carbocation in the active site, which undergoes a series of structural rearrangements until a product is formed via deprotonation or nucleophile attack. However, for the vast majority of these enzymes the productive binding orientation of the intermediate carbocations has remained unclear. In this work, a method that combines quantum mechanics and computational docking is used to generate an all-atom model of every putative intermediate formed in the context of the enzyme active site for tobacco epi-aristolochene synthase (TEAS). This method identifies a single pathway that links the first intermediate to the last, enabling us to propose the first high-resolution model for the reaction intermediates in the active site of TEAS, and providing testable predictions

    Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes.

    Get PDF
    Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation

    Stereodivergent, Diels-Alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application.

    Get PDF
    Chiral α,β-unsaturated acylammonium salts are novel dienophiles enabling enantioselective Diels-Alder-lactonization (DAL) organocascades leading to cis- and trans-fused, bicyclic γ- and δ-lactones from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe extensions of stereodivergent DAL organocascades to other racemic dienes bearing pendant secondary and tertiary alcohols, and application to a formal synthesis of (+)-dihydrocompactin is described. A combined experimental and computational investigation of unsaturated acylammonium salt formation and the entire DAL organocascade pathway provide a rationalization of the effect of Brønsted base additives and enabled a controllable, diastereodivergent DAL process leading to a full complement of possible stereoisomeric products. Evaluation of free energy and enthalpy barriers in conjunction with experimentally observed temperature effects revealed that the DAL is a rare case of an entropy-controlled diastereoselective process. NMR analysis of diene alcohol-Brønsted base interactions and computational studies provide a plausible explanation of observed stabilization of exo transition-state structures through hydrogen-bonding effects

    Modulation of inherent dynamical tendencies of the bisabolyl cation via preorganization in epi-isozizaene synthase.

    Get PDF
    The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase (epi-isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi-isozizaene appear to play important roles

    Documenting work through videos. A project by Officina Emilia with nine engineering firms in the province of Modena (2008-2010)

    Get PDF
    In order to meet the need of representing labour in the workshop, Officina Emilia has concentrated on work in the small mechanical factories. The aim is to spread - among teachers, young persons and their families, local administrators and people who work at various levels in the local institutions - a knowledge of what the world of engineering production entails and of the people employed in it, and to investigate in depth the nexus between innovation and production, knowledge and learning places. Research, analysis and transmission of knowledge would need to be mobilized on a very large scale to find answers to the questions as to the current nature of jobs and what workers do in mechanical factories. Through the OE_Imprese project, Officina Emilia has set a preliminary aim: to contribute to opening the discussion, to signal the need to find answers, to better formulate the questions, to articulate the knowledge of the variety of cases, situations and contexts in which workers operate today. A multidisciplinary working group has set up instruments to facilitate the preliminary stages of collection and analysis of the documentation of the firms, and has selected the video as a suitable tool for gathering documentation for the research and the construction effective teaching instruments. In this paper (in a bilingual version Italian/English) we present two video productions made in the OE_Imprese project: a series of videointerviews with 35 workers (in Italian with subtitles in English), and a videoinstallation to narrate firms and workers in the Modena engineering district. The videos were made in the period November 2008-January 2009, by Filippo Tantillo and Sara Pozzoli. The collaboration between Officina Emilia and the firms of the territory emerges from the need to investigate and make visible the intermesh between production and innovation that formerly characterized the district, and that still today represents an aspect peculiar to engineering production in the Modena area, projecting it into the future, mapping out the paths of transformation

    Effect of Isotopically Sensitive Branching on Product Distribution for Pentalenene Synthase: Support for a Mechanism Predicted by Quantum Chemistry

    Get PDF
    Mechanistic proposals for the carbocation cascade reaction leading to the tricyclic sesquiterpene pentalenene are assessed in light of the results of isotopically sensitive branching experiments with the H309A mutant of pentalenene synthase. These experimental results support a mechanism for pentalenene formation involving a 7-protoilludyl cation whose intermediacy was first predicted using quantum-chemical calculations
    corecore