4 research outputs found

    Solar cycle evolution of ULF wave power in solar wind and on ground

    No full text
    Abstract The solar cycle evolution of the ultra-low frequency (ULF) power was studied in solar wind and on ground. We aim finding out how the ULF power in interplanetary and on ground magnetic field evolves over the solar cycle 23 (SC23) and how well do they follow each other in monthly time scales. The hourly power of the ULF waves was computed in the Pc5 frequency range 2–7 mHz for years 1998–2008. The highest wave power in SC23 is found to occur in late 2003 and the lowest at the solar minimum. Ground ULF power follows the IMF power and solar wind speed, particularly well during declining phase. The ULF power in winter exceeds the ULF power in other seasons during the declining phase of SC23, while equinoxes dominate in the ascending phase and the solar maximum. The ground ULF power was found to rise with magnetic latitude from 54° to 73°, after which Pc5 power decreases towards the polar cap. The Pc5 power in the auroral zone is larger in the nightside than the dayside due to substorm activity implying that magnetotail processes are an important contributor to the nightside ULF power

    Large regional variability in geomagnetic storm effects in the auroral zone

    No full text
    Abstract A digital society is fragile and vulnerable to space-originated electromagnetic disturbances. Global geomagnetic conditions have been actively monitored since the invention of the magnetometer in 1833. However, regional changes in the magnetic environment have been widely left unstudied because of the sparsity of the observing networks. The Scandinavian Magnetometer Array (SMA) was the densest magnetometer network in history, and it was in operation in Fennoscandia during the International Magnetospheric Study (IMS) in 1976–1979. The data has been left mainly unstudied because it was recorded on 35 mm films, which are difficult to use for scientific studies. We used the DigiMAG digitization method to digitize magnetic data from all 32 SMA stations for a geomagnetic storm on 10–12 December 1977. Using these digitized values and modern magnetic data, we found large regional differences about up to 2 nT/km during strong geomagnetic storms (Dst 100–200 nT) and 7 nT/km for major scale Halloween geomagnetic storm, which correspond to 400 and 1400 nT difference for a typical 200 km station separation, respectively. The average size of substorms is 400 nT in the auroral zone. We conclude that the sparse magnetometer network can cause an underestimation of the regional magnetic disturbances and their effects. Misestimation of regional disturbances during extreme storms like the Carrington event may lead to insufficient planning of mitigation procedures and strategies

    Measurements of natural radiation with an MDU Liulin type device at ground and in the atmosphere at various conditions in the Arctic region

    No full text
    Abstract Measurements of the natural radiation background with different devices and at various conditions are important from a methodological point of view in order to compare and eventually inter-calibrate different experimental sets, also to provide a reliable basis for improving the existing models for assessment of the environmental radiation in the Earth’s atmosphere. Here, we report results from methodological measurements with a small portable device, namely mobile dosimetry unit (MDU)-1 Liulin, performed in different conditions in the Arctic region, including the altitude profile of the atmospheric radiation obtained during the flight of the HEMERA-2 zero-pressure balloon. A comparison with a calibrated device is also performed. It was demonstrated that the MDU-1 Liulin can provide reliable measurements of the radiation background in the Arctic atmosphere during a zero-pressure balloon flight

    GMAG:an open-source python package for ground-based magnetometers

    No full text
    Abstract Magnetometers are a key component of heliophysics research providing valuable insight into the dynamics of electromagnetic field regimes and their coupling throughout the solar system. On satellites, magnetometers provide detailed observations of the extension of the solar magnetic field into interplanetary space and of planetary environments. At Earth, magnetometers are deployed on the ground in extensive arrays spanning the polar cap, auroral and sub-auroral zone, mid- and low-latitudes and equatorial electrojet with nearly global coverage in azimuth (longitude or magnetic local time—MLT). These multipoint observations are used to diagnose both ionospheric and magnetospheric processes as well as the coupling between the solar wind and these two regimes at a fraction of the cost of in-situ instruments. Despite their utility in research, ground-based magnetometer data can be difficult to use due to a variety of file formats, multiple points of access for the data, and limited software. In this short article we review the Open-Source Python library GMAG which provides rapid access to ground-based magnetometer data from a number of arrays in a Pandas DataFrame, a common data format used throughout scientific research
    corecore