132 research outputs found

    New insights on the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation

    Get PDF
    Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at SNP, gene and pathway level. Coverage of genetic variants was increased compared to previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. 7,062,950 SNPs were analysed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (p=1.80e-08, ITGA9 (integrin alpha 9)) and rs76191705 (p=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At gene level, no consistent effect was found. At pathway level, the Gene Ontology terms GO:0005694 (chromosome) and GO:0044427 (chromosomal part) were associated with improvement (corrected p=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (p=0.047), while rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying their role

    Enrichment of schizophrenia heritability in both neuronal and glia cell regulatory elements

    Get PDF
    Genome-wide association studies have identified over 100 robust risk loci for schizophrenia with thousands of variants mediating genetic heritability, the majority of which reside in non-coding regions. Analytical approaches have shown this heritability is strongly enriched at variants within regulatory elements identified from human post-mortem brain tissue. However, bulk post-mortem brain tissue has a heterogeneous cell composition, making biological interpretations difficult. We sought to refine the cell types mediating schizophrenia heritability by separating neuronal and glial signals using data from: (1) NeuN-sorted post-mortem brain and (2) cell culture systems. Schizophrenia heritability was partitioned using linkage disequilbrium (LD) score regression. Variants within genomic regions marked by H3K4me3 (marker of active promoters) from NeuN-positive (neuronal) and NeuN-negative (non-neuronal) cells explained a significant amount of schizophrenia heritability (P = 1.38 × 10−10 and P = 7.97 × 10−10). However, variants located in H3K4me3 sites specific to NeuN-positive (neuronal) cells were enriched (P = 3.13 × 10−4), while those specific to NeuN-negative (non-neuronal) cells were not (P = 0.470). Data from cell culture systems mimicked this pattern of association. We show the previously observed enrichment of heritability from variants at brain H3K4me3 sites is mediated by both neuronal and non-neuronal brain cell types. However, only neuronal cell populations showed a unique contribution driven by cell-type specific regulatory elements. Cell culture systems recapitulate disease relevant gene-regulatory landscapes, validating them as a tool for future investigation of genetic mechanisms underlying schizophrenia. Identifying the cell types in which risk variants operate will greatly increase our understanding of schizophrenia pathobiology and aid in the development of novel model systems and therapies

    Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks

    Get PDF
    Background: Genome-wide association studies of Alzheimer’s disease (AD) have identified a number of significant risk loci, the majority of which lie in non-coding regions of the genome. The lack of causal alleles and considerable polygenicity remains a significant barrier to translation into mechanistic understanding. This includes identifying causal variants and the cell/tissue types in which they operate. A fuller understanding of the cell types and transcriptional networks involved in AD genetic risk mechanisms will provide important insights into pathogenesis. Methods: We assessed the significance of the overlap between genome-wide significant AD risk variants and sites of open chromatin from data sets representing diverse tissue types. We then focussed on macrophages and microglia to investigate the role of open chromatin sites containing motifs for specific transcription factors. Partitioned heritability using LDscore regression was used to investigate the contribution of specific macrophage and microglia transcription factor motif-containing open chromatin sites to the heritability of AD. Results: AD risk single nucleotide polymorphisms (SNPs) are preferentially located at sites of open chromatin in immune cells, particularly monocytes (z score = 4.43; corrected P = 5.88 × 10− 3). Similar enrichments are observed for macrophages (z score = 4.10; corrected P < 2.40 × 10− 3) and microglia (z score = 4.34, corrected P = 0.011). In both macrophages and microglia, AD risk variants are enriched at a subset of open chromatin sites that contain DNA binding motifs for specific transcription factors, e.g. SPI1 and MEF2. Genetic variation at many of these motif-containing sites also mediate a substantial proportion of AD heritability, with SPI1-containing sites capturing the majority of the common variant SNP-chip heritability (microglia enrichment = 16.28, corrected enrichment P = 0.0044). Conclusions: AD risk alleles plausibly operate in immune cells, including microglia, and are concentrated in specific transcriptional networks. Combined with primary genetic association results, the SPI1 and MEF2 transcriptional networks appear central to AD risk mechanisms. Investigation of transcription factors targeting AD risk SNP associated regulatory elements could provide powerful insights into the molecular processes affected by AD polygenic risk. More broadly, our findings support a model of polygenic disease risk that arises from variants located in specific transcriptional networks

    Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (<it>AVPR1A</it>) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at <it>AVPR1A </it>has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5'-flanking region of <it>AVPR1A </it>in variable gene expression and social behaviour.</p> <p>Methods</p> <p>We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the <it>AVPR1A </it>gene for association in an autism cohort from Ireland. Two 5'-flanking region polymorphisms in the human <it>AVPR1A</it>, RS3 and RS1, were also tested for their effect on relative promoter activity.</p> <p>Results</p> <p>The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (<it>P </it>= 0.036 and <it>P </it>= 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y.</p> <p>Conclusions</p> <p>These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased <it>AVPR1A </it>transcription, which may proffer increased susceptibility to the autism phenotype.</p

    Examining cognition across the bipolar / schizophrenia diagnostic spectrum

    Get PDF
    BACKGROUND: Cognitive impairments are well-established features of schizophrenia, but there is ongoing debate about the nature and degree of cognitive impairment in patients with schizoaffective disorder and bipolar disorder. We hypothesized that there is a spectrum of increasing impairment from bipolar disorder to schizoaffective disorder bipolar type, to schizoaffective disorder depressive type and schizophrenia. METHODS: We compared performance on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery between participants with schizophrenia (n = 558), schizoaffective disorder depressive type (n = 112), schizoaffective disorder type (n = 76), bipolar disorder (n = 78) and healthy participants (n = 103) using analysis of covariance with post hoc comparisons. We conducted an ordinal logistic regression to examine whether cognitive impairments followed the hypothesized spectrum from bipolar disorder (least severe) to schizophrenia (most severe). In addition to categorical diagnoses, we addressed the influence of symptom domains, examining the association between cognition and mania, depression and psychosis. RESULTS: Cognitive impairments increased in severity from bipolar disorder to schizoaffective disorder bipolar type, to schizophrenia and schizoaffective disorder depressive type. Participants with schizophrenia and schizoaffective disorder depressive type showed equivalent performance (d = 0.07, p = 0.90). The results of the ordinal logistic regression were consistent with a spectrum of deficits from bipolar disorder to schizoaffective disorder bipolar type, to schizophrenia/schizoaffective disorder depressive type (odds ratio = 1.98, p < 0.001). In analyses of the associations between symptom dimensions and cognition, higher scores on the psychosis dimension were associated with poorer performance (B = 0.015, standard error = 0.002, p < 0.001). LIMITATIONS: There were fewer participants with schizoaffective disorder and bipolar disorder than schizophrenia. Despite this, our analyses were robust to differences in group sizes, and we were able to detect differences between groups. CONCLUSION: Cognitive impairments represent a symptom dimension that cuts across traditional diagnostic boundaries

    Schizophrenia genetics: Building the foundations of the future

    Get PDF
    In recent years, our understanding of the genetic architecture of schizophrenia, a phrase which denotes the numbers of risk variants, their frequencies and effect sizes, has been transformed. This has come about through advances in technology that have allowed almost the entire human genome to be simultaneously interrogated for the presence of disease-associated genetic variation and allows this to be performed in sample sizes powered for a realistic possibility of success. Another development has been the emergence of international consortia willing to share raw data and their coalescence into super-consortia to achieve sample sizes and bodies of clinical and analytic expertise that was unimaginable a decade ago. These innovations have driven the emergence of statistically robust and replicable genetic findings in schizophrenia, and a rapid escalation in the number of those findings over the last 5 years. The latest example comes from the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC-SCZ) which, at the time of publication, included contributions from around 37 000 individuals with schizophrenia, 302 investigators, 35 countries, and 4 continents.1 In their recent paper, published in Nature in July 2014, the PGC-SCZ group report 128 statistically independent genetic associations, implicating a minimum of 108 conservatively defined schizophrenia-associated genetic loci.1 Of the identified loci, 83 have not been previously robustly supported as playing a role in schizophrenia, but it is also important to note the findings are consistent with previous literature; 25 loci that had previously been reported as associated with schizophrenia in large samples were again supported in this much larger analysis, confirming that the use of large samples and stringent statistical cut-offs results in reproducible findings. The availability of so many robustly supported findings offers immense opportunities for investigating and advancing our understanding of etiology

    Multimodal brain imaging reveals structural differences in Alzheimer's disease polygenic risk carriers: A study in healthy young adults

    Get PDF
    Background Recent genome-wide association studies have identified genetic loci that jointly make a considerable contribution to risk of developing Alzheimer’s disease (AD). Because neuropathological features of AD can be present several decades before disease onset, we investigated whether effects of polygenic risk are detectable by neuroimaging in young adults. We hypothesized that higher polygenic risk scores (PRSs) for AD would be associated with reduced volume of the hippocampus and other limbic and paralimbic areas. We further hypothesized that AD PRSs would affect the microstructure of fiber tracts connecting the hippocampus with other brain areas. Methods We analyzed the association between AD PRSs and brain imaging parameters using T1-weighted structural (n = 272) and diffusion-weighted scans (n = 197). Results We found a significant association between AD PRSs and left hippocampal volume, with higher risk associated with lower left hippocampal volume (p = .001). This effect remained when the APOE gene was excluded (p = .031), suggesting that the relationship between hippocampal volume and AD is the result of multiple genetic factors and not exclusively variability in the APOE gene. The diffusion tensor imaging analysis revealed that fractional anisotropy of the right cingulum was inversely correlated with AD PRSs (p = .009). We thus show that polygenic effects of AD risk variants on brain structure can already be detected in young adults. Conclusions This finding paves the way for further investigation of the effects of AD risk variants and may become useful for efforts to combine genotypic and phenotypic data for risk prediction and to enrich future prevention trials of AD

    Flower senescence in composite flowers, can understanding how dahlia florets senesce help to increase dahlia vase life?

    Get PDF
    The dahlia is popular as an ornamental garden plant in the UK, however, its value as a cut flower has been undermined by its short vase life. The vase life of dahlias is often no more than 5 days, whereas 10-14 days are required by the cut flower industry due to the supply chain involved in transporting cut flowers from growers to retailers, sufficient time in store, and still guaranteeing 5 days vase life to a consumer. The current study has considered ethylene sensitivity and how phytohormones interact with one another during the senescence process. In conjunction with these traditional methods, RNA sequencing and de novo assembly of the dahlia transcriptome in the cultivar 'Sylvia' has been carried out, resulting in an assembly of over 20,000 genes, many of which change in expression during floret senescence

    Fractional anisotropy of the uncinate fasciculus and cingulum in bipolar disorder type I, type II, their unaffected siblings and healthy controls

    Get PDF
    Background: Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research. Aims: This study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings. Method: Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II. Results: The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association. Conclusions: Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis

    The psychiatric risk gene transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability

    Get PDF
    Background Common genetic variants in and around the gene encoding transcription factor 4 (TCF4) are associated with an increased risk of schizophrenia. Conversely, rare damaging TCF4 mutations cause Pitt–Hopkins syndrome and have also been found in individuals with intellectual disability (ID) and autism spectrum disorder (ASD). Methods Chromatin immunoprecipitation and next generation sequencing were used to identify the genomic targets of TCF4. These data were integrated with expression, epigenetic and disease gene sets using a range of computational tools. Results We identify 10604 TCF4 binding sites in the genome that were assigned to 5437 genes. De novo motif enrichment found that most TCF4 binding sites contained at least one E-box (5′-CAtcTG). Approximately 77% of TCF4 binding sites overlapped with the H3K27ac histone modification for active enhancers. Enrichment analysis on the set of TCF4 targets identified numerous, highly significant functional clusters for pathways including nervous system development, ion transport and signal transduction, and co-expression modules for genes associated with synaptic function and brain development. Importantly, we found that genes harboring de novo mutations in schizophrenia (P = 5.3 × 10−7), ASD (P = 2.5 × 10−4), and ID (P = 7.6 × 10−3) were also enriched among TCF4 targets. TCF4 binding sites were also found at other schizophrenia risk loci including the nicotinic acetylcholine receptor cluster, CHRNA5/CHRNA3/CHRNB4 and SETD1A. Conclusions These data demonstrate that TCF4 binding sites are found in a large number of neuronal genes that include many genetic risk factors for common neurodevelopmental disorders
    corecore