20 research outputs found

    Electrical characterization of MIS diode prepared by magnetron sputtering

    Get PDF
    TiO2 thin film has been prepared on n-type Si wafer to fabricate an Au/TiO2/n-Si (MIS) diode by RF magnetron sputtering technique. The current-voltage (I-V) and capacitance-voltage (C-V) measurements of the diode have been performed over a wide range of temperatures (240-400 K) and frequencies (10 kHz-1 MHz), respectively. From I-V measurements, an abnormal increase in the barrier height (Φb) and a decrease in the ideality factor (n) with increasing temperature have been observed. This temperature dependence has been attributed to the barrier in homogeneities by assuming a Gaussian distribution (GD) of barrier heights at metal/semiconductor (M/S) interface. Both the conventional and modified Richardson plot show linearity. The activation energy (Ea), Richardson constant (A*) and Φb value have been calculated from the slope and intercept of the linear region. The obtained Richardson constant value of 113.82 A. cm-2. K-2 is in close agreement with the known value of 112 A.cm-2. K-2 for n-Si. The interface state density (Nss) and series resistance (Rs) of the diode has been obtained from the I-V measurements. In addition, the Φb value was determined from C-2-V characteristics. The obtained results indicate that the MIS diode with TiO2 interfacial insulator layer can be used in many device applications

    Electrical characterization of MIS diode prepared by magnetron sputtering

    Get PDF
    142-148TiO2 thin film has been prepared on n-type Si wafer to fabricate an Au/TiO2/n-Si (MIS) diode by RF magnetron sputtering technique. The current-voltage (I-V) and capacitance-voltage (C-V) measurements of the diode have been performed over a wide range of temperatures (240-400 K) and frequencies (10 kHz-1 MHz), respectively. From I-V measurements, an abnormal increase in the barrier height (Φb) and a decrease in the ideality factor (n) with increasing temperature have been observed. This temperature dependence has been attributed to the barrier in homogeneities by assuming a Gaussian distribution (GD) of barrier heights at metal/semiconductor (M/S) interface. Both the conventional and modified Richardson plot show linearity. The activation energy (Ea), Richardson constant (A*) and Φb value have been calculated from the slope and intercept of the linear region. The obtained Richardson constant value of 113.82 A. cm-2. K-2 is in close agreement with the known value of 112 A.cm-2. K-2 for n-Si. The interface state density (Nss) and series resistance (Rs) of the diode has been obtained from the I-V measurements. In addition, the Φb value was determined from C-2-V characteristics. The obtained results indicate that the MIS diode with TiO2 interfacial insulator layer can be used in many device applications

    Model Updating of Nonlinear Structures

    No full text
    corecore