10 research outputs found

    For plantar taping, direction of elasticity matters

    No full text
    Abstract Plantar taping has been used in clinical settings as a short-term conservative treatment for plantar heel pain and related pathologies. The rise of at-home taping methods may offer patients more independence, but effectiveness has not been established. The purpose of this study was to evaluate the effects of plantar taping on foot mechanics during gait. We hypothesized that material compliance would drive mechanical effectiveness, with longitudinally inelastic tape reducing medial longitudinal arch (MLA) motion and anterior/posterior (A/P) plantar tissue spreading forces, and laterally inelastic tape reducing medial/lateral (M/L) tissue spreading. We also hypothesized that these effects would be influenced by foot structure. Fifteen healthy participants were tested in a randomized cross-over study design. Barefoot (BF) plus four taping methods were evaluated, including two inelastic tapes (Low-Dye, LD, and FasciaDerm, FD) along with longitudinally elastic kinesiology tape (KT) and a novel laterally elastic kinesiology tape (FAST, FS). Participants’ arch height and flexibility were measured followed by instrumented gait analysis with a multi-segment foot model. Ankle eversion and MLA drop/rise were calculated from rearfoot and forefoot reference frames, while plantar tissue spreading was calculated from shear stresses. ANOVAs with Holm pairwise tests evaluated tape effects while correlations connected arch structure and taping effectiveness (α = 0.05). The three longitudinally inelastic tapes (LD, FD, FS) reduced MLA drop by 11–15% compared with KT and BF. In late stance, these tapes also inhibited MLA rise (LD by 29%, FD and FS by 10–15%). FS and FD reduced A/P spreading forces, while FD reduced M/L spreading forces compared with all other conditions. Arch height had a moderately strong correlation (r = -0.67) with the difference in MLA drop between BF and FS. At-home plantar taping can affect the mechanical function of the foot, but tape elasticity direction matters. Longitudinally elastic kinesiology tape has little effect on mechanics, while inelastic tapes control MLA drop but also restrict MLA rise in late stance. Lateral elasticity does not limit tissue spreading and may increase comfort without sacrificing MLA control. At-home taping has the potential to broaden conservative treatment of plantar heel pain, flat foot deformity, and related pathologies, but additional studies are needed to connect mechanics with symptom relief

    The Quiet Crisis

    No full text

    Inductively Coupled Plasma Mass Spectrometry

    No full text

    Atomic Spectroscopy: A Review

    No full text

    The Coral Trait Database, a curated database of trait information for coral species from the global oceans.

    Get PDF
    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research
    corecore