25 research outputs found

    Subcellular Localization of Hexose Kinases in Pea Stems: Mitochondrial Hexokinase

    Full text link

    Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring.

    Get PDF
    The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research

    Engineered acetoacetate-inducible whole-cell biosensors based on the AtoSC two-component system

    Get PDF
    Whole-cell biosensors hold potential in a variety of industrial, medical and environmental applications. These biosensors can be constructed through the repurposing of bacterial sensing mechanisms, including the common two-component system. Here we report on the construction of a range of novel biosensors that are sensitive to acetoacetate, a molecule that plays a number of roles in human health and biology. These biosensors are based on the AtoSC two-component system. An ordinary differential equation model to describe the action of the AtoSC two-component system was developed and sensitivity analysis of this model used to help inform biosensor design. The final collection of biosensors constructed displayed a range of switching behaviours, at physiologically relevant acetoacetate concentrations and can operate in several Escherichia coli host strains. It is envisaged that these biosensor strains will offer an alternative to currently available commercial strip tests and, in future, may be adopted for more complex in vivo or industrial monitoring applications

    89 New Ultracool Dwarf Co-Moving Companions Identified With The Backyard Worlds: Planet 9 Citizen Science Project

    Full text link
    We report the identification of 89 new systems containing ultracool dwarf companions to main sequence stars and white dwarfs, using the citizen science project Backyard Worlds: Planet 9 and cross-reference between Gaia and CatWISE2020. Thirty-two of these companions and thirty-three host stars were followed up with spectroscopic observations, with companion spectral types ranging from M7-T9 and host spectral types ranging from G2-M9. These systems exhibit diverse characteristics, from young to old ages, blue to very red spectral morphologies, potential membership to known young moving groups, and evidence of spectral binarity in 9 companions. Twenty of the host stars in our sample show evidence for higher order multiplicity, with an additional 11 host stars being resolved binaries themselves. We compare this sample's characteristics with those of the known stellar binary and exoplanet populations, and find our sample begins to fill in the gap between directly imaged exoplanets and stellary binaries on mass ratio-binding energy plots. With this study, we increase the population of ultracool dwarf companions to FGK stars by \sim42\%, and more than triple the known population of ultracool dwarf companions with separations larger than 1,000 au, providing excellent targets for future atmospheric retrievals.Comment: 61 pages, 11 figures, 11 tables. Accepted for publication in A
    corecore