2 research outputs found

    Enhanced Thermoelectric Performance in the SrTi<sub>0.85</sub>Nb<sub>0.15</sub>O<sub>3</sub> Oxide Nanocomposite with Fe<sub>2</sub>O<sub>3</sub>‑Functionalized Graphene

    No full text
    Doped SrTiO3 is considered one of the potential thermoelectric (TE) candidates but its TE figure of merit, ZT needs to be improved for practical application of electricity generation from high-grade waste-heat. In the present work, enhanced TE performance has been realized for SrTi0.85Nb0.15O3 (STN) perovskite adopting the strategy of composite formation with Fe2O3-functionalized graphene (FGR). We have achieved a maximum electrical conductivity of 1.4 × 105 S m–1 for 1 wt % FGR added to STN, which is around 1185% larger than that of pristine STN. The presence of FGR in the STN matrix acts as a mobility booster of electrons, overcoming the effect of Anderson localization of electrons, which impedes the electron transport in STN. This is evident from the order of magnitude increase in weighted mobility of STN after FGR addition. Furthermore, the incorporation of FGR causes about a 34% decrease in the lattice thermal conductivity. The Debye–Callaway model demonstrates that the phonon–phonon Umklapp scattering is primarily responsible for reduced thermal conductivity. The presence of FGR sheets along the grain boundaries of STN, Fe2O3 nanoparticles, and lattice imperfections gives rise to the glass-like temperature-independent phonon mean-free-path, especially above Debye temperature. The maximum ZT ∼ 0.57 has been obtained at 947 K for the 1 wt % FGR sample, which is around 420% higher than that of pristine STN. Furthermore, we have fabricated a prototype of a four-legged n-type TE module, demonstrating one of the highest power outputs of 18 mW among reported oxide thermoelectrics

    Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys

    No full text
    Intrinsically high lattice thermal conductivity has remained a major bottleneck for achieving a high thermoelectric figure of merit (zT) in state-of-the-art ternary half-Heusler (HH) alloys. In this work, we report a stable n-type biphasic-quaternary (Ti,V)CoSb HH alloy with a low lattice thermal conductivity κL ≈ 2 W m–1 K–1 within a wide temperature range (300–873 K), which is comparable to the reported nanostructured HH alloys. A solid-state transformation driven by spinodal decomposition upon annealing is observed in Ti0.5V0.5CoSb HH alloy, which remarkably enhances phonon scattering, while electrical properties correlate well with the altering electronic band structure and valence electron count (VEC). A maximum zT ≈ 0.4 (±0.05) at 873 K was attained by substantial lowering of κL and synergistic enhancement of the power factor. We perform first-principles density functional theory calculations to investigate the structure, stability, electronic structure, and transport properties of the synthesized alloy, which rationalize the reduction in the lattice thermal conductivity to the increase in anharmonicity due to the alloying. This study upholds the new possibilities of finding biphasic-quaternary HH compositions with intrinsically reduced κL for prospective thermoelectric applications
    corecore