33 research outputs found

    Improved bounds on Lorentz violation from composite-pulse Ramsey spectroscopy in a trapped ion

    Get PDF
    In attempts to unify the four known fundamental forces in a single quantum-consistent theory, it is suggested that Lorentz symmetry may be broken at the Planck scale. Here we search for Lorentz violation at the low-energy limit by comparing orthogonally oriented atomic orbitals in a Michelson-Morley-type experiment. We apply a robust radiofrequency composite pulse sequence in the 2F7/2^2F_{7/2} manifold of an Yb+^+ ion, extending the coherence time from 200 μ\mus to more than 1 s. In this manner, we fully exploit the high intrinsic susceptibility of the 2F7/2^2F_{7/2} state and take advantage of its exceptionally long lifetime. We match the stability of the previous best Lorentz symmetry test nearly an order of magnitude faster and improve the constraints on the symmetry breaking coefficients to the 10−21^{-21} level. These results represent the most stringent test of this type of Lorentz violation. The demonstrated method can be further extended to ion Coulomb crystals

    Off-resonant Raman transitions impact in an atom interferometer

    No full text
    International audienceWe study the influence of off-resonant two photon transitions on high precision measurements with atom interferometers based on stimulated Raman transitions. These resonances induce a two photon light shift on the resonant Raman condition. The impact of this effect is investigated in two highly sensitive experiments: a gravimeter and a gyroscope-accelerometer. We show that it can lead to significant systematic phase shifts, which have to be taken into account in order to achieve best performances in term of accuracy and stability

    Towards a transportable aluminium ion quantum logic optical clock

    Get PDF
    With the advent of optical clocks featuring fractional frequency uncertainties on the order of 10-17 and below, new applications such as chronometric leveling with few-centimeter height resolution emerge. We are developing a transportable optical clock based on a single trapped aluminum ion, which is interrogated via quantum logic spectroscopy. We employ singly charged calcium as the logic ion for sympathetic cooling, state preparation, and readout. Here, we present a simple and compact physics and laser package for manipulation of 40Ca+. Important features are a segmented multilayer trap with separate loading and probing zones, a compact titanium vacuum chamber, a near-diffraction-limited imaging system with high numerical aperture based on a single biaspheric lens, and an all-in-fiber 40Ca+ repump laser system. We present preliminary estimates of the trap-induced frequency shifts on 27Al+, derived from measurements with a single calcium ion. The micromotion-induced second-order Doppler shift for 27Al+ has been determined to be δνEMMν=-0.4-0.3 +0.4×10-18 and the black-body radiation shift is δνBBR/ν = (-4.0 ± 0.4) × 10-18. Moreover, heating rates of 30 (7) quanta per second at trap frequencies of ωrad,Ca+ ≈ 2π × 2.5 MHz (ωax,Ca+ ≈ 2π × 1.5 MHz) in radial (axial) direction have been measured, enabling interrogation times of a few hundreds of milliseconds

    Sideband thermometry of ion crystals

    Full text link
    Coulomb crystals of cold trapped ions are a leading platform for the realisation of quantum processors and quantum simulations and, in quantum metrology, for the construction of optical atomic clocks and for fundamental tests of the Standard Model. For these applications, it is not only essential to cool the ion crystal in all its degrees of freedom down to the quantum ground state, but also to be able to determine its temperature with a high accuracy. However, when a large ground-state cooled crystal is interrogated for thermometry, complex many-body interactions take place, making it challenging to accurately estimate the temperature with established techniques. In this work we present a new thermometry method tailored for ion crystals. The method is applicable to all normal modes of motion and does not suffer from a computational bottleneck when applied to large ion crystals. We test the temperature estimate with two experiments, namely with a 1D linear chain of 4 ions and a 2D crystal of 19 ions and verify the results, where possible, using other methods. The results show that the new method is an accurate and efficient tool for thermometry of ion crystals.Comment: 12+5 pages, 9+2 figures, Fig.3(b) was correcte

    Absolute frequency measurement of the magnesium intercombination transition 1S0→3P1^1S_0 \to ^3P_1

    Full text link
    We report on a frequency measurement of the (3s2)1S0→(3s3p)3P1(3s^2)^1S_0\to(3s3p)^3P_1 clock transition of 24^{24}Mg on a thermal atomic beam. The intercombination transition has been referenced to a portable primary Cs frequency standard with the help of a femtosecond fiber laser frequency comb. The achieved uncertainty is 2.5×10−122.5\times10^{-12} which corresponds to an increase in accuracy of six orders of magnitude compared to previous results. The measured frequency value permits the calculation of several other optical transitions from 1S0^1S_0 to the 3PJ^3P_J-level system for 24^{24}Mg, 25^{25}Mg and 26^{26}Mg. We describe in detail the components of our optical frequency standard like the stabilized spectroscopy laser, the atomic beam apparatus used for Ramsey-Bord\'e interferometry and the frequency comb generator and discuss the uncertainty contributions to our measurement including the first and second order Doppler effect. An upper limit of 3×10−133\times10^{-13} in one second for the short term instability of our optical frequency standard was determined by comparison with a GPS disciplined quartz oscillator.Comment: 8 pages, 8 figure
    corecore