261 research outputs found

    Search for Cosmic-Ray Antideuterons

    Full text link
    We performed a search for cosmic-ray antideuterons using data collected during four BESS balloon flights from 1997 to 2000. No candidate was found. We derived, for the first time, an upper limit of 1.9E-4 (m^2 s sr GeV/nucleon)^(-1) for the differential flux of cosmic-ray antideuterons, at the 95% confidence level, between 0.17 and 1.15 GeV/nucleon at the top of the atmosphere.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Coeval perpendicular shortenings in the Brasilia belt : collision of irregular plate margins leading to oroclinal bending in the Neoproterozoic of central Brazil

    Get PDF
    The three belts which form the Tocantins province (central Brazil) records Neoproterozoic-EoPaleozoic collisions involving the Amazon and São Francisco paleocontinents and the Paraná continental block. The Brasília belt is a typical orocline bended around the WNW—ESE striking Pirineus Zone of High Strain (PZHS) and is comprised of the NE-trending (northern) and SE-trending (southern) segments. The Brasília dome is an N—S elliptical structural window situated in the center of the belt, at the eastern end of the PZHS. It evidences Di— D₂ and D₃ɴ shortenings (~ 750—590 Ma) due to ocean closure and Amazon- São Francisco collision following a WNW—ESE path, and demonstrates similar evolution for both segments of the belt. However, in the southern segment, D₁—D₂ structures are deformed by shortening in the SW-NE direction (D₃S). New data demonstrating D₁—D₂ and D₃ɴ tectonites deformed by D₃S struc- tures in the area close to the dome's SW margin and SE of the PZHS support understanding the Brasília belt and oroclinal bending as a consequence of the collision of two (Amazon and São Francisco) irregular continental margins leading to separation-rotation of the Paraná block from the Amazon paleocontinent and the Paraná-São Francisco collision

    The power of perturbation theory

    Get PDF
    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the PicardLefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented

    APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane

    Get PDF
    Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated

    Introductory lectures on lattice QCD at nonzero baryon number

    Get PDF
    These lecture notes contain an elementary introduction to lattice QCD at nonzero chemical potential. Topics discussed include chemical potential in the continuum and on the lattice; the sign, overlap and Silver Blaze problems; the phase boundary at small chemical potential; imaginary chemical potential; and complex Langevin dynamics. An incomplete overview of other approaches is presented as well. These lectures are meant for postgraduate students and postdocs with an interest in extreme QCD. A basic knowledge of lattice QCD is assumed but not essential. Some exercises are included at the end

    MAGE-A protein and MAGE-A10 gene expressions in liver metastasis in patients with stomach cancer

    Get PDF
    Tumour samples from 71 patients with stomach cancer, 41 patients with liver metastasis (group A) and 15 patients each in stages II–IV (group B) and stage I (group C) without liver metastasis were analysed. MAGE-A protein expression was evaluated by immunohistochemistry using a 6C1 monoclonal antibody and MAGE-A10 mRNA expression was detected by highly sensitive in situ hybridisation using a cRNA probe. Expressions of MAGE-A protein and MAGE-A10 mRNA in group A were detected in 65.9 and 80.5%, respectively. Both protein and gene showed significantly higher expression in group A than those in groups B (6.7, 26.7%) and C (0, 0%) (P=0.0003, P=<0.0001, respectively). MAGE-A10 mRNA expression in liver metastasis was found in eight (88.9%) out of nine patients. The concordant rate between MAGE-A family protein expression and MAGE-A10 mRNA expression in the primary sites was 81.7% (P<0.0001). MAGE-A10 gene expression was associated with reduced survival duration. The results of this study suggest that MAGE-A10 is a possible target in active immunotherapy for advanced stomach cancer

    Inter-domain Communication Mechanisms in an ABC Importer: A Molecular Dynamics Study of the MalFGK2E Complex

    Get PDF
    ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”

    Measurements of Cosmic-ray Low-energy Antiproton and Proton Spectra in a Transient Period of the Solar Field Reversal

    Get PDF
    The energy spectra of cosmic-ray low-energy antiprotons and protons have been measured by BESS in 1999 and 2000, during a period covering the solar magnetic field reversal. Based on these measurements, a sudden increase of the antiproton to proton flux ratio following the solar magnetic field reversal was observed, and it generally agrees with a drift model of the solar modulation.Comment: 4 pages, 4 figures, revised version accepted for publication in Phys. Rev. Let
    corecore