267 research outputs found
Coherent Manipulation of Individual Electron Spin in a Double Quantum Dot Integrated with a Micro-Magnet
We report the coherent manipulation of electron spins in a double quantum dot
integrated with a micro-magnet. We performed electric dipole spin resonance
experiments in the continuous wave (CW) and pump-and-probe modes. We observed
two resonant CW peaks and two Rabi oscillations of the quantum dot current by
sweeping an external magnetic field at a fixed frequency. Two peaks and
oscillations are measured at different resonant magnetic field, which reflects
the fact that the local magnetic fields at each quantum dot are modulated by
the stray field of a micro-magnet. As predicted with a density matrix approach,
the CW current is quadratic with respect to microwave (MW) voltage while the
Rabi frequency (\nu_Rabi) is linear. The difference between the \nu_Rabi values
of two Rabi oscillations directly reflects the MW electric field across the two
dots. These results show that the spins on each dot can be manipulated
coherently at will by tuning the micro-magnet alignment and MW electric field.Comment: 5 pages, 3 figure
Reversible Electric-Field-Driven Magnetic Domain-Wall Motion
Control of magnetic domain-wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain-wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field-driven magnetic domain-wall motion is demonstrated for epitaxial Fe films on BaTiO3 with in-plane and out-of-plane polarized domains. In this system, magnetic domain-wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric-field strength.Peer reviewe
Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO[sub 3]
We report on domain formation and magnetization reversal in epitaxial Fe films on ferroelectric BaTiO3 substrates with ferroelastica–c stripe domains. The Fe films exhibit biaxial magnetic anisotropy on top of c domains with out-of-plane polarization, whereas the in-plane lattice elongation of a domains induces uniaxial magnetoelasticanisotropy via inverse magnetostriction. The strong modulation of magnetic anisotropy symmetry results in full imprinting of the a–c domain pattern in the Fe films. Exchange and magnetostaticinteractions between neighboring magnetic stripes further influence magnetization reversal and pattern formation within the a and c domains.Peer reviewe
- …