112 research outputs found

    East Meets West: The Japan Association of National University Libraries (JANUL) and the University of Central Florida (UCF) Exchange Librarians and Learning Commons Information

    Get PDF
    Is your library contemplating an international librarian exchange? Such exchanges not only increase participants’ understanding of other cultures, they also challenge participants to look at their own cultures from a new perspective. Two academic librarians, Yuka Taniguchi from Kobe University1 (Japan) and Barbara Tierney from the University of Central Florida2 discuss their visits to each other’s libraries in 2016–2017 to share information about their respective learning commons and outreach programs. This article focuses on the lessons learned for each librarian and practical tips on how to accomplish a successful academic library foreign exchange

    A Splice Variant of ASC Regulates IL-1β Release and Aggregates Differently from Intact ASC

    Get PDF
    The apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) is involved in apoptosis and innate immunity and is a major adaptor molecule responsible for procaspase-1 activation. ASC mRNA is encoded by three exons: exons 1 and 3 encode a pyrin domain (PYD) and caspase recruit domain (CARD), respectively, and exon 2 encodes a proline and glycine-rich (PGR) domain. Here, we identified a variant ASC protein (vASC) lacking the PGR domain that was smaller than full length ASC (fASC) derived from fully transcribed mRNA and searched for differences in biochemical and biological nature. Both fASC and vASC were found to activate procaspase-1 to a similar degree, but the efficiency of IL-1β excretion was significantly higher for vASC. There was also a marked structural difference observed in the fibrous aggregates formed by fASC and vASC. These results suggest that although the PGR domain is dispensable for procaspase-1 activation, it plays an important role in the regulation of the molecular structure and activity of ASC

    Usefulness of diffusion-weighted magnetic resonance imaging for evaluating the effect of hemostatic radiotherapy for unresectable gastric cancer

    Get PDF
    There are several reports that vouch for the usefulness of diffusion-weighted image (DWI) in making a diagnosis before treatment. However, no study has evaluated the effect of radiotherapy (RT) for unresectable gastric cancer. In the present case report, we evaluated the effectiveness of RT using DWI. An 81-year-old man was hospitalized with a broken bone and then diagnosed with advanced gastric cancer with breeding. He had chorionic renal failure and surgery was impossible. Further, contrast-enhanced computed tomography and magnetic resonance imaging (MRI) were not performed due to renal failure, whereas palliative RT was performed. We followed up the patient using blood test and MRI (DWI) to estimate whether bleeding had stopped or not after radiotherapy. Hemostasis effect was found after 2 weeks of RT. In DWI examination, there was a decrease in the tumor signal intensity 30 days after RT. Similarly, at day 60, the tumor signal intensity further decreased on DWI and the blood test results indicated no progression of anemia. At 4 months after the RT, the patient died because of respiratory failure without any bleeding. DWI is useful not only for the initial diagnosis but also for evaluating the effectiveness of RT.Trial registration: National clinical study registered number: UMIN000026362

    Alteration of Concanavalin A Binding Glycoproteins in Cerebrospinal Fluid and Serum of Alzheimer's Disease Patients

    Get PDF
    Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. It is characterized pathologically by the formation of senile plaques and neurofibrilly tangles in the brain. Diagnostic markers for detecting earlier stages of AD are needed. We measured the intensity of concanavalin A (Con A) binding activities of glycoproteins of the cerebrospinal fluid (CSF) and serum of subjects to clarify the modification of core mannose since we expected that aberrant glycosylation of glycoproteins might be useful as a new biomarker for detecting AD. CSF samples were collected from 15 patients with probable AD (AD group), 5 patients with probable dementia with Lewy bodies (DLB) (DLB group) and 8 controls without dementia (control group), whereas serum samples from 20 patients with probable AD and 20 controls without dementia were also collected. Glycoproteins in the CSF and serum were detected by lectin blotting using Con A. In the CSF of the AD group, 2 Con A binding glycoproteins were significantly higher compared with the control group. Furthermore, using analysis of variance, 3 Con A binding glycoproteins detected from the CSF of the AD group showed significant differences among the 3 groups. The levels of 3 Con A binding glycoproteins were significantly lower than in non-dementia controls in the serum. These changes in Con A binding activities did not depend on the amount of proteins. Therefore, the data indicate that the aberrance of protein glycosylation relates to the pathology of AD, and has some promise as a new biomarker for the diagnosis of AD

    Potential tactics with certain gut microbiota for the treatment of unresectable hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) constitutes an extremely malignant form of primary liver cancer. Intricate connections linking to the immune system might be associated with the pathogenesis of HCC. Meanwhile, immunotherapy with immune checkpoint inhibitors has been established to be a favorable therapeutic possibility for advanced HCC. Although curative opportunities for advanced HCC are restricted, the immune checkpoint immunotherapy has developed as the main choice for treating HCC. However, patients with metabolic-associated fatty liver disease (MAFLD)-linked HCC might be less likely to benefit from the immunotherapy alone. The limitation of the effect of the immunotherapy might be owing to the impaired T cell activation in MAFLD patients, which could be well explained by a dysfunctional gut-liver axis. Gut microbiota and their metabolites including several bile acids could contribute to modulating the responses of the immune checkpoint immunotherapy. Roles of gut microbiota in the development of cancers have expected great interest in the latest studies. Here, an interplay between the gut and liver has been presented, which might suggest to affect the efficacy of immune checkpoint immunotherapy against HCC

    Life-Detection Technologies for the Next Two Decades

    Full text link
    Since its inception six decades ago, astrobiology has diversified immensely to encompass several scientific questions including the origin and evolution of Terran life, the organic chemical composition of extraterrestrial objects, and the concept of habitability, among others. The detection of life beyond Earth forms the main goal of astrobiology, and a significant one for space exploration in general. This goal has galvanized and connected with other critical areas of investigation such as the analysis of meteorites and early Earth geological and biological systems, materials gathered by sample-return space missions, laboratory and computer simulations of extraterrestrial and early Earth environmental chemistry, astronomical remote sensing, and in-situ space exploration missions. Lately, scattered efforts are being undertaken towards the R&D of the novel and as-yet-space-unproven life-detection technologies capable of obtaining unambiguous evidence of extraterrestrial life, even if it is significantly different from Terran life. As the suite of space-proven payloads improves in breadth and sensitivity, this is an apt time to examine the progress and future of life-detection technologies.Comment: 6 pages, the white paper was submitted to and cited by the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Univers

    Mechanical Stress Activates Smad Pathway through PKCδ to Enhance Interleukin-11 Gene Transcription in Osteoblasts

    Get PDF
    BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)δ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress

    Significance of IgG4-positive cells in severe eosinophilic chronic rhinosinusitis

    Get PDF
    Background: IgG4 production is regulated by type 2 (IL-4 and IL-13) and regulatory (IL-10) cytokines involved in the pathophysiology of chronic rhinosinusitis (CRS). We sought to determine the pathophysiological characteristics of IgG4-positive cells in sinonasal tissues in CRS, especially eosinophilic CRS (ECRS). Methods: IgG4-positive cells in uncinate tissues (UT) and nasal polyps (NP) were examined by immunohistochemistry. Associations between the number of IgG4-positive cells and clinicopathological factors were analyzed. Receiver operating characteristics (ROC) analysis was performed to determine the cut-off value of IgG4-positive cells in tissue that can predict the post-operative course. Results: IgG4 was mainly expressed in infiltrating plasma and plasmacytoid cells, and the number of IgG4-positive cells was significantly higher in NP, especially those from severe ECRS patients, than in UT. In CRS patients, the number of IgG4-positive cells significantly and positively correlated with blood and tissue eosinophilia, radiological severity, and serum level of total IgE. The number of infiltrating IgG4-positive cells was significantly higher in patients with a poor post-operative course (sustained sinus shadow 6 months after surgery) than in those with a good one. The number of IgG4-positive cells in NP could discriminate patients with a good or a poor post-operative course (area under the curve: 0.769). Also, 73.3% sensitivity and 82.5% specificity were achieved when the cut-off value was set at 17 cells/high-power field. Conclusions: Our results suggest that the local expression of IgG4 on cells may be used as a biomarker that reflects the pathophysiology of CRS, including the post-operative course

    Potential tactics with vitamin D and certain phytochemicals for enhancing the effectiveness of immune-checkpoint blockade therapies

    Get PDF
    Immunotherapy strategies targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) are revolutionizing oncology. However, its effectiveness is limited in part due to the loss of effector cytotoxic T lymphocytes. Interestingly, supplementation of vitamin D could abolish the repressive effect of programmed cell death-ligand 1 (PD-L1) on CD8+ T cells, which might prevent the lymphocytopenia. In addition, vitamin D signaling could contribute to the differentiation of T-regulatory (Treg) cells associated with the expression of Treg markers such as forkhead box P3 (FOXP3) and CTLA-4. Furthermore, vitamin D may be associated with the stimulation of innate immunity. Peroxisome proliferator-activated receptor (PPAR) and estrogen receptor (ESR) signaling, and even the signaling from phosphoinositide-3 kinase (PI3K)/AKT pathway could have inhibitory roles in carcinogenesis possibly via the modulation of immune checkpoint molecules. In some cases, certain small molecules including vitamin D could be a novel therapeutic modality with a promising potential for the better performance of immune checkpoint blockade cancer therapies
    corecore