5 research outputs found

    Procesos de intercambio de materiales en la interfase agua-sedimento en piscifactorias marinas en jaulas flotantes

    Full text link
    La sostenibilidad de la producción piscícola marina en jaulas flotantes requiere, entre otras cuestiones, de la mejora de la gestión ambiental y de la reducción de los impactos ambientales que la actividad genera. Para ello, es importante tener un buen conocimiento de los efectos que el enriquecimiento orgánico tiene en el ecosistema y conocer los procesos de recuperación cuando la actividad cesa. Este estudio se llevó a cabo en una piscifactoría de dorada (Sparus aurata) ubicada en la costa del Mediterráneo español. Se estimaron los flujos bentónicos in situ de oxígeno y nutrientes, se midieron parámetros de la columna de agua y de los sedimentos y se determinó la macrofauna bentónica, bajo una jaula ubicada en el centro de la instalación y en una estación control. Se realizaron 8 campañas de muestreo abarcando dos fases: la de funcionamiento y tras el cierre definitivo de la actividad acuícola. En la fase de funcionamiento se observó que en los sedimentos bajo las jaulas se generó una acumulación de materia orgánica y fósforo total y los sedimentos se volvieron más reductores, mostrando niveles máximos en verano. La macrofauna presentó una menor riqueza específica y una mayor abundancia respecto del control siendo el poliqueto Capitella capitata la especie dominante bajo las jaulas. Debido a la mineralización de la materia orgánica, los sedimentos bajo las jaulas funcionaron como un sumidero de oxígeno disuelto, y también como una fuente, hacia la columna de agua, de nitrógeno inorgánico disuelto y fosfato. Sin embargo, los flujos de sílice no parecieron verse afectados por la actividad de la piscifactoría. En la columna de agua se produjo una disminución de la concentración de oxígeno disuelto y un aumento de nitrógeno inorgánico disuelto y fosfato, llegando a modificarse, en ocasiones, la relación estequiométrica de los nutrientes y el nutriente limitante para la producción primaria. A pesar de haber encontrado mayores concentraciones de nutrientes en las inmediaciones de las jaulas, no se apreció una correspondencia con los niveles de clorofila a probablemente debido al papel que juega el biofouling marino de las estructuras sumergidas de las instalaciones piscícolas en el aprovechamiento de nutrientes, partículas y fitoplancton. Tras el cese definitivo de la actividad, la recuperación de la zona se manifestó, a distintas escalas temporales, mediante síntomas de recuperación parcial de los diversos parámetros abióticos y bióticos del medio. El primer parámetro en recuperarse fueron los flujos bentónicos de amonio, seguido de los de fosfato y oxígeno disuelto y el porcentaje de materia orgánica en los sedimentos, los cuales a los 3 meses del cese de la piscifactoría ya mostraron niveles semejantes a los medidos en la estación control. A los 9 meses del cese también se vieron recuperados el resto de parámetros abióticos de los sedimentos perturbados por la actividad, tales como el porcentaje de la fracción gruesa, la concentración de fósforo total y las medidas del potencial redox. La recuperación de la macrofauna fue más lenta que la de los parámetros abióticos. A los 3 meses del cese de la actividad, la abundancia de Capitella capitata ya había descendido drásticamente, en el área que fue afectada por la piscifactoría, pero no se observó hasta el muestro después de 2 años del cierre de la piscifactoría niveles semejantes de riqueza específica en las dos zonas muestreadas.Morata Higón, T. (2013). Procesos de intercambio de materiales en la interfase agua-sedimento en piscifactorias marinas en jaulas flotantes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34772TESI

    Exchange of nutrients and oxygen across the sediment-water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea

    Full text link
    Purpose: This study analyzes the effects of aquaculture activities in open seawater in the north-western coastal waters of the Mediterranean Sea. It is the first of its kind to be based on benthic flux data gathered in situ below fish farms for this particular area. Materials and methods: Samples were collected on four sampling campaigns over a 1-year cycle under a Sparus aurata fish farm facility where benthic fluxes were measured in situ using light and dark benthic chambers. Bottom water and sediment samples were also collected. Data were compared to those for a nearby control station. Results and discussion: Significant differences were found (ANOVA, p < 0. 05) between concentrations of organic matter (OM), total phosphorus and redox potentials in sediments located under the cages and those of the control station. The consumption of dissolved oxygen (DO) by sediment and positive ammonium (NH4 +) fluxes was stimulated by OM content, with correlations of r = -0. 60 (p < 0. 01) and r = 0. 70 (p < 0. 01), respectively. The OM content of sediments was found to be consistently higher under the cages than at the control station, with the highest value (1. 8 ± 0. 7 %) under the cages observed during the early summer; values of DO and NH4 + fluxes were -64 ± 17 and 12. 7 ± 1. 0 mmol m-2 day-1, respectively. PO4 3- fluxes were consistently higher in the fish farm sediments (between 0. 58 and 0. 98 mmol m-2 day-1) than those observed at the control station. Nitrate (NO3 -) fluxes were found to be consistently negative due to denitrification occurring in the sediments and were related to the concentration of NO3 - in bottom waters (r = 0. 92, p < 0. 01). Si fluxes were shown to be associated with water temperature (r = 0. 59, p < 0. 05). Conclusions: The results imply that sediments located below cages accumulate organic matter originating from aquaculture activities, especially during summer months when this activity increases. Sediments undergo biogeochemical changes that mainly affect fluxes of DO, NH4 + and soluble reactive phosphorus, although these do not seem to have a significant impact on the quality of the water column due to the hydrodynamic characteristics of the area. © 2012 Springer-Verlag.We would like to thank the Caja del Mediterraneo for a predoctoral fellowship fund for this research and Antonio Asuncion Acuigroup Maremar manager for the facilities and support in conducting the study. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. We are grateful for the valuable comments of the anonymous reviewers on previous versions of the manuscript.Morata Higón, T.; Sospedra, J.; Falco Giaccaglia, SL.; Rodilla Alama, M. (2012). Exchange of nutrients and oxygen across the sediment-water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea. Journal of Soils and Sediments. 12(10):1623-1632. doi:10.1007/s11368-012-0581-2S162316321210APHA, AWWA, and WEF (2005) Standard methods for the examination of water wastewater, 21st edn. American Public Health Association, WashingtonAksu M, Kocatas A (2007) Environmental effects of the three fish farms in Izmir Bay (Aegean Sea-Turkey) on water column and sediment. Rapport du 38e Congrés de la Commission Internationale Pour L’exploration Scientifique de la Mer Méditerranée 38, 414Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. Centre National pour l’Explotation des Oceans, BrestArocena R, Conde D (1999) Sedimento. Métodos en ecología de aguas continentales. Universidad de la República, Montevideo, pp 40–52Asociación Empresarial de Productores de Cultivos Marinas (APROMAR) (2010) La Acuicultura Marina de Peces en España, pp. 69Baumgarten MGZ, Rocha JM, Niencheski LFH (1996) Manual de análises em oceanografia química, Rio GrandeBelias C, Dassenakis M, Scoullos M (2007) Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Mar Chem 103:266–275Berelson WM, McManus J, Coale KH, Johnson KS, Burdige D, Kilgore T, Colodner D, Chavez F, Kudela R, Boucher J (2003) A time series of benthic flux measurements from Monterey Bay, CA. Cont Shelf Res 23:457–481Black KD, McDougall N (2002) Hydrography of four Mediterranean marine cage sites. J Appl Ichthyol 18:129–133Borja A, Rodríguez JG, Black K, Bodoy A, Emblow C, Fernandes TF, Forte J, Karakassis I, Muxika I, Nickell TD, Papageorgiou N, Pranovi F, Sevastou K, Tomassetti P, Angel D (2009) Assessing the suitability of a range of benthic indices in the evaluation of environmental impact of fin and shellfish aquaculture located in sites across Europe. Aquaculture 293:231–240Cermelj B, Ogrinc N, Faganeli J (2001) Anoxic mineralization of biogenic debris in near-shore marine sediments (Gulf of Trieste, northern Adriatic). Sci Total Environ 266:143–152Dell’Anno A, Mei ML, Pusceddu A, Danovaro R (2002) Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. Mar Pollut Bull 44:611–622Dosdat A (2001) Environmental impact of aquaculture in the Mediterranean: nutritional and feeding aspects. Environmental impact assessment of Mediterranean aquaculture farms. Cah Options Méditerr CIHEAM-FAO 55:23–36Ferrón S, Ortega T, Forja JM (2009) Benthic fluxes in a tidal salt marsh creek by fish farm activities: Río San Pedro (Bay of Cádiz, SW Spain). Mar Chem 113:50–62Freitas U, Niencheski LFH, Zarzur S, Manzolli RP, Vieira JPP, Rosa LC (2008) Influência de um cultivo de camaraô sobre o metabolismo béntico e a qualidade da agua. Rev Bras Eng Agríc Ambient 12:293–301Hall POJ, Holby O, Kollberg S, Samuelsson MO (1992) Chemical fluxes and mass balances in a marine fish cage farm: IV. Nitrogen. Mar Ecol Prog Ser 89:81–91Hargrave B (2005) Environmental effects of marine finfish aquaculture. The handbook of environmental. chemistry, vol. 5. Part M. Springer, BerlinHargrave BT, Phillips GA, Doucette LI, White MJ, Milligan TG, Wildish DJ, Cranston RE (1997) Assessing benthic impacts of organic enrichment from marine aquaculture. Water Air Soil Pollut 99:641–650Heilskov AC, Holmer M (2001) Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. ICES J Mar Sci 58:427–434Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590Holby O, Hall POJ (1991) Chemical fluxes and mass balances in a marine fish cage farm. 11. Phosphorus. Mar Ecol Prog Ser 70:263–272Holby O, Hall POJ (1994) Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon. Aquaculture 120:305–318Jackson C, Preston N, Thompson PJ (2004) Intake and discharge nutrient loads at three intensive shrimp farms. Aquacult Res 35:1053–1061Karakassis I, Tsapakis M, Hatziyanni E (1998) Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Mar Ecol Prog Ser 162:243–252Kaymakci A, Aksu M, Egemen O (2010) Impacts of the fish farms on the water column nutrient concentrations and accumulation of heavy metals in the sediments in the eastern Aegean Sea (Turkey). Environ Monit Assess 162:439–451Lorenti M, De Falco G (2004) Measurements and characterization of abiotic variables. In: Gambi MC, Diappiano M (eds) Mediterranean marine benthos: a manual of methods for its sampling and study. Societa Italiana di Biologia Marina, Genova, pp 1–37Maldonado M, Carmona MC, Echeverría Y, Riesgo A (2005) The environmental impact of Mediterranean cage fish farms at semi-exposed locations: does it need a re-assessment? Helgol Mar Res 59:121–135Mantzavrakos E, Kornaros M, Lyberatos G, Kaspiris P (2007) Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination 210:110–124Mazzola A, Mirto S, La Rosa T, Fabiano M, Danovaro R (2000) Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES J Mar Sci 57:1454–1461Molina L, Vergara JM (2005) Impacto ambiental de jaulas flotantes: estado actual de conocimientos y conclusiones prácticas. Bol Inst Esp Oceanogr 21:75–81Morán XAG, Estrada M (2005) Winter pelagic photosynthesis in the NW Mediterranean Deep-Sea. Research I 52:1806–1822Neofitou N, Klaoudatos S (2008) Effect of fish farming on the water column nutrient concentration in a semi-enclosed gulf of the Eastern Mediterranean. Aquac Res 39:482–490Niencheski LF, Jahnke RA (2002) Benthic respiration and inorganic nutrient fluxes in the estuarine región of Patos Lagoon (Brazil). Aquat Geochem 8:135–152Nizzoli D, Bartoli M, Viaroli P (2007) Oxygen and ammonium dynamics during a farming cycle of the bivalve Tapes philippinarum. Hydrobiologia 587:25–36Pergent-Martini C, Boudouresque CF, Pasqualini V, Pergent G (2006) Impact of fish farming facilities on Posidonia oceanica meadows: a review. Mar Ecol 27:310–319Pitta P, Karakassis I, Tsapakis M, Zivanovic S (1999) Natural versus mariculture induced variability in nutrients and plankton in the Eastern Mediterranean. Hydrobiologia 391:181–194Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. Interscience, New YorkRiise JC, Roos N (1997) Benthic metabolism and the effects of bioturbation in a fertilized polyculture fish pond in northeast Thailand. Aquaculture 150:45–62Rodríguez J (1999) Ecología. Ed. Pirámide. pp 411Sakamaki T, Nishimura O, Sudo R (2006) Tidal time-scale variation in nutrient flux across the sediment-water interface of an estuarine tidal flat. Estuar Coast Shelf Sci 67:653–663Sarà G, Scilipoti D, Milazzo M, Modica A (2006) Use of stable isotopes to investigate dispersal of waste from fish farms as a function of hydrodynamics. Mar Ecol Prog Ser 313:261–270Shepard FP (1954) Nomenclature based on sand-silt-clay relations. J Sediment Petrol 24:151–158Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’Alcalá M, Vaqué D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. BG 7:1543–1586Warnken KW, Gill GA, Lehman R, Dellapenna T, Allison MA (2002) The effects of shrimp trawling on sediment oxygen demand and the release of trace metals and nutrients from estuarine sediments. Estuar Coast Shelf Sci 57:25–42Yucel-Gier G, Kucuksezgin F, Kocak F (2007) Effects of fish farming on nutrients and benthic community structure in the Eastern Aegean (Turkey). Aquac Res 38:256–26

    Programas de vigilancia ambiental en instalaciones acuícolas marinas de la Comunidad Valenciana

    Full text link
    El estudio trata de seleccionar los indicadores más representativos de los efectos ambientales producidos por piscifactorías de piscinas flotantes marinas de dorada (Sparus Aurata) y lubina (Dicentrarchus Labrax) situadas en la costa de la Comunidad Valenciana y proponer mejoras para los Programas de Vigilancia Ambiental.Morata Higón, T. (2007). Programas de vigilancia ambiental en instalaciones acuícolas marinas de la Comunidad Valenciana. http://hdl.handle.net/10251/12449Archivo delegad

    Métodos de muestreo y análisis de aguas anóxicas en el Estany de Cullera

    Full text link
    Un estuario es un ecosistema acuático que forma la zona de transición entre el mundo continental del agua dulce y el del agua marina de los océanos. Son áreas de alta productividad debido a la gran cantidad de nutrientes que le Ilegan provenientes de la tierra y el mar, quedando estos atrapados en el lugar. Resaltar, sobre los resultados obtenidos, que debido a la elevada acumulación de materia orgánica, consecuencia de la elevada entrada de nutrientes a través de las acequias que lo alimentan y las modificaciones de circulación consecuencia de las obras costeras y la falta de caudales punta que entran en la cabecera del Estany, generan un sistema estuarino estratificado anóxico, como se ve en los resultados, que impide y malogra el mantenimiento de la elevada biomasa piscícola que se describe en tiempos más o menos cercanos.Morata Higón, T. (2006). Métodos de muestreo y análisis de aguas anóxicas en el Estany de Cullera. Universitat Politècnica de València. http://hdl.handle.net/10251/31317Archivo delegad

    Potenciais evocados auditivos de tronco encefálico em frentistas Auditory brainstem response in gas station attendants

    Get PDF
    A ototoxidade dos solventes orgânicos pode atingir o sistema auditivo a nível coclear e retrococlear. OBJETIVO: Avaliar a integridade neurofisiológica do sistema auditivo até tronco cerebral por meio do PEATE. MÉTODO: Estudo prospectivo. Estudados frentistas de três postos de gasolina da cidade de Santa Maria/RS. A amostra ficou composta por 21 sujeitos, que foram avaliados por meio de potenciais evocados auditivos de tronco encefálico. RESULTADOS: Alteração nas latências absolutas das ondas I e III e em todas as latências interpicos, na orelha direita. Na orelha esquerda houve alteração na latência absoluta de todas as ondas, e em todos os intervalos interpicos. Alteração na diferença interaural da onda V foi verificada em 19% dos sujeitos. No grupo exposto há mais de cinco anos, foram estatisticamente significantes o número de sujeitos com alteração: no intervalo interpico I-V da orelha direita; na latência absoluta da onda I e no intervalo interpico III-V da orelha esquerda. CONCLUSÃO: A exposição a combustíveis pode causar alterações no sistema auditivo central.<br>Ototoxicity of organic solvents can affect the hearing system up to the cochlea level and the central structures of hearing. OBJECTIVE: To evaluate the neurophysiological integrity of the hearing system in subjects exposed to fuels using ABR. METHOD: Prospective study. We evaluated attendants from three gas stations in Santa Maria/RS. The sample had 21 subjects, who were evaluated by auditory brainstem response. RESULTS: We found an alteration in the absolute latencies of Waves I and III and in all the interpeak latencies, in the right ear. In the left ear there was a change in the absolute latencies of all Waves, and in all the interpeak intervals. A change in the interaural difference of Wave V was found in 19% of the individuals. In the group exposed for more than five years, there were subjects with a statistically significant changes: in the I-V interpeak of the right ear; in the absolute latency of Wave I and in the III-V interpeak of the left year. CONCLUSION: Exposure to fuels can cause alterations in the central hearing system
    corecore