5 research outputs found

    A Robust and Biocompatible Bismuth Ellagate MOF Synthesized Under Green Ambient Conditions

    Get PDF
    The first bioinspired microporous metal-organic framework (MOF) synthesized using ellagic acid, a common natural antioxidant and polyphenol building unit, is presented. Bi2O(H2O)2(C14H2O8)\ub7nH2O (SU-101) was inspired by bismuth phenolate metallodrugs, and could be synthesized entirely from nonhazardous or edible reagents under ambient aqueous conditions, enabling simple scale-up. Reagent-grade and affordable dietary supplement-grade ellagic acid was sourced from tree bark and pomegranate hulls, respectively. Biocompatibility and colloidal stability were confirmed by in vitro assays. The material exhibits remarkable chemical stability for a bioinspired MOF (pH = 2-14, hydrothermal conditions, heated organic solvents, biological media, SO2 and H2S), attributed to the strongly chelating phenolates. A total H2S uptake of 15.95 mmol g-1 was recorded, representing one of the highest H2S capacities for a MOF, where polysulfides are formed inside the pores of the material. Phenolic phytochemicals remain largely unexplored as linkers for MOF synthesis, opening new avenues to design stable, eco-friendly, scalable, and low-cost MOFs for diverse applications, including drug delivery

    The complete mitochondrial and plastid genomes of the invasive marine red alga Caulacanthus okamurae (Caulacanthaceae, Rhodophyta) from Moss Landing, California, USA

    No full text
    Caulacanthus okamurae is an invasive red alga that forms extensive mats in sheltered marine habitats around the world. To determine its genomic structure and genetic relationship to native and other non-native populations of C. okamurae, high-throughput sequencing analysis was performed on an introduced specimen from Bennett Slough, Moss Landing, California, USA. Assembly of 23,146,595 filtered 150 bp paired-end Illumina sequencing reads yielded its complete mitogenome (GenBank accession MT193839) and plastid genome (GenBank accession MT193838). The mitogenome is 25,995 bp in length and contains 50 genes. The plastid genome is 173,516 bp and contains 234 genes. Comparison of the organellar chromosomes to other Gigartinales revealed a high-level of gene synteny. BLAST analysis of marker sequences (rbcL, cox1, cox2) of C. okamurae from Moss Landing identified four identical DNA sequences: one from a specimen from a native population of C. okamurae from South Korea and three from specimens representing invasive populations from France, Spain, and the USA. These genetic results confirm the presence of C. okamurae in central California, USA, and represent the first complete mitogenome and plastid genome from the Caulacanthaceae

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore