6,183 research outputs found

    Immigration and Inter-Regional Mobility in the UK, 1982-2000

    Get PDF
    The possible effects of higher immigration, raising unemployment and lowering earnings for locals, has been a contentious empirical issue and it has recently come to the fore in Britain. Most studies that look across local labour markets, chiefly for the US but recently for the UK, have found the effects of immigration to be benign. One possibility is that an influx of immigrants from abroad to a specific area simply pushes non-immigrants onwards to other localities and thereby spreads the labour market effects over the whole economy. We investigate this issue looking at net internal migration across 11 UK regions over two decades. While we find consistently negative crowding out effects, the results are not statistically very strong. Neither are they enhanced when embedded in a model that includes other variables that drive inter-regional migration or one that examines bilateral population flows between regions. We conclude that this particular channel of adjustment is fairly weak.UK immigration, inter-regional migration

    Modulational-instability-free pulse compression in anti-resonant hollow-core photonic crystal fiber

    Full text link
    Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensation. To obtain stable compressed pulses, it is crucial to avoid decoherence through modulational instability (MI) during spectral broadening. Here we show that changes in dispersion due to spectral anti-crossings between the fundamental core mode and core wall resonances in anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum, enabling MI-free pulse compression for optimized fiber designs. In addition, higher-order dispersion can introduce MI even when the pump pulses lie in the normal dispersion region

    Jet physics in heavy-ion collisions

    Full text link
    Jets are expected to play a prominent role in the ongoing efforts to characterize the hot and dense QCD medium created in ultrarelativistic heavy ion collisions. The success of this program depends crucially on the existence of a full theoretical account of the dynamical effects of the medium on the jets that develop within it. By focussing on the discussion of the essential ingredients underlying such a theoretical formulation, we aim to set the appropriate context in which current and future developments can be understood.Comment: 36 pages, 5 figures, few minor corrections, references added. Final version published in IJMP

    Jet coherence in QCD media: the antenna radiation spectrum

    Get PDF
    We study the radiation of a highly energetic partonic antenna in a colored state traversing a dense QCD medium. Resumming multiple scatterings of all involved constituents with the medium we derive the general gluon spectrum which encompasses both longitudinal color coherence between scattering centers in the medium, responsible for the well known Landau-Pomeranchuk-Migdal (LPM) effect, and transverse color coherence between partons inside a jet, leading, in vacuum, to angular ordering of the parton shower. We discuss shortly the onset of transverse decoherence which is reached in opaque media. In this regime, the spectrum consists of independent radiation off the antenna constituents.Comment: 15 pages, 2 figures, paper shortened and partly rewritten, references added, results unchange

    Continuously wavelength-tunable high harmonic generation via soliton dynamics

    Full text link
    We report generation of high harmonics in a gas-jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas-jet is placed directly at the fiber output. As the energy increases the ionization-induced soliton blue-shift is transferred to the high harmonics, leading to a emission bands that are continuously tunable from 17 to 45 eV

    Long-lived refractive index changes induced by femtosecond ionization in gas-filled single-ring photonic crystal fibers

    Full text link
    We investigate refractive index changes caused by femtosecond photoionization in a gas-filled hollow-core photonic crystal fiber. Using spatially-resolved interferometric side-probing, we find that these changes live for tens of microseconds after the photoionization event - eight orders of magnitude longer than the pulse duration. Oscillations in the megahertz frequency range are simultaneously observed, caused by mechanical vibrations of the thin-walled capillaries surrounding the hollow core. These two non-local effects can affect the propagation of a second pulse that arrives within their lifetime, which works out to repetition rates of tens of kilohertz. Filling the fiber with an atomically lighter gas significantly reduces ionization, lessening the strength of the refractive index changes. The results will be important for understanding the dynamics of gas-based fiber systems operating at high intensities and high repetition rates, when temporally non-local interactions between successive laser pulses become relevant.Comment: 5 pages with four figures and one tabl

    Bridging the Gap between Probabilistic and Deterministic Models: A Simulation Study on a Variational Bayes Predictive Coding Recurrent Neural Network Model

    Full text link
    The current paper proposes a novel variational Bayes predictive coding RNN model, which can learn to generate fluctuated temporal patterns from exemplars. The model learns to maximize the lower bound of the weighted sum of the regularization and reconstruction error terms. We examined how this weighting can affect development of different types of information processing while learning fluctuated temporal patterns. Simulation results show that strong weighting of the reconstruction term causes the development of deterministic chaos for imitating the randomness observed in target sequences, while strong weighting of the regularization term causes the development of stochastic dynamics imitating probabilistic processes observed in targets. Moreover, results indicate that the most generalized learning emerges between these two extremes. The paper concludes with implications in terms of the underlying neuronal mechanisms for autism spectrum disorder and for free action.Comment: This paper is accepted the 24th International Conference On Neural Information Processing (ICONIP 2017). The previous submission to arXiv is replaced by this version because there was an error in Equation

    Novel mid-infrared dispersive wave generation in gas-filled PCF by transient ionization-driven changes in dispersion

    Get PDF
    Gas-filled hollow-core photonic crystal fibre (PCF) is being used to generate ever wider supercontinuum spectra, in particular via dispersive wave (DW) emission in the deep and vacuum ultraviolet, with a multitude of applications. DWs are the result of the resonant transfer of energy from a self-compressed soliton, a process which relies crucially on phase matching. It was recently predicted that, in the strong-field regime, the additional transient anomalous dispersion introduced by gas ionization would allow phase-matched DW generation in the mid-infrared (MIR)-something that is forbidden in the absence of free electrons. Here we report for the first time the experimental observation of such MIR DWs, embedded in a 4.7-octave-wide supercontinuum that uniquely reaches simultaneously to the vacuum ultraviolet, with up to 1.7 W of total average power
    corecore