34 research outputs found

    A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures

    Get PDF
    We describe a system for respiratory motion correction of MRI-derived roadmaps for use in X-ray guided cardiac catheterisation procedures. The technique uses a subject-specific affine motion model that is quickly constructed from a short pre-procedure MRI scan. We test a dynamic MRI sequence that acquires a small number of high resolution slices, rather than a single low resolution volume. Additionally, we use prior knowledge of the nature of cardiac respiratory motion by constraining the model to use only the dominant modes of motion. During the procedure the motion of the diaphragm is tracked in X-ray fluoroscopy images, allowing the roadmap to be updated using the motion model. X-ray image acquisition is cardiac gated. Validation is performed on four volunteer datasets and three patient datasets. The accuracy of the model in 3D was within 5 mm in 97.6% of volunteer validations. For the patients, 2D accuracy was improved from 5 to 13 mm before applying the model to 2–4 mm afterwards. For the dynamic MRI sequence comparison, the highest errors were found when using the low resolution volume sequence with an unconstrained model

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease

    Full text link

    Magnetic resonance imaging planning in children with complex congenital heart disease: a new approach

    Get PDF
    OBJECTIVES: To compare a standard sequential 2D Planning Method (2D-PM) with a 3D offline Planning Method (3D-PM) based on 3D contrast-enhanced magnetic resonance angiography (CE-MRA) in children with congenital heart disease (CHD). DESIGN: In 14 children with complex CHD (mean: 2.6 years, range: 3 months to 7.6 years), axial and coronal cuts were obtained with single slice spin echo sequences to get the final double oblique longitudinal cut of the targeted anatomical structure (2D-PM, n = 31). On a separate workstation, similar maximal intensity projection (MIP) images were generated offline from a 3D CE-MRA. MIP images were localizers for repeated targeted imaging using the previous spin echo sequence (3D-PM). Finally, image coverage, spatial orientation and acquisition time were compared for 2D-PM and 3D-PM. MAIN OUTCOME MEASURES: 2D-PM and 3D-PM images were similar: both perfectly covered the selected anatomic regions and no spatial differences were found (p>0.05). The mean time for creation of the final imaging plane was 241 ± 31 s (2D-PM) compared to 71 ± 18 s (3D-PM) (p<0.05). CONCLUSIONS: 3D-PM shows similar results compared to 2D-PM, but allows faster and offline planning thereby reducing the scan time significantly. As newly developed high-resolution 3D datasets can also be used further improvement of this technology is expected

    Magnetic resonance imaging planning in children with complex congenital heart disease:a new approach

    No full text
    \u3cp\u3eOBJECTIVES: To compare a standard sequential 2D Planning Method (2D-PM) with a 3D offline Planning Method (3D-PM) based on 3D contrast-enhanced magnetic resonance angiography (CE-MRA) in children with congenital heart disease (CHD).\u3c/p\u3e\u3cp\u3eDESIGN: In 14 children with complex CHD (mean: 2.6 years, range: 3 months to 7.6 years), axial and coronal cuts were obtained with single slice spin echo sequences to get the final double oblique longitudinal cut of the targeted anatomical structure (2D-PM, n = 31). On a separate workstation, similar maximal intensity projection (MIP) images were generated offline from a 3D CE-MRA. MIP images were localizers for repeated targeted imaging using the previous spin echo sequence (3D-PM). Finally, image coverage, spatial orientation and acquisition time were compared for 2D-PM and 3D-PM.\u3c/p\u3e\u3cp\u3eMAIN OUTCOME MEASURES: 2D-PM and 3D-PM images were similar: both perfectly covered the selected anatomic regions and no spatial differences were found (p&gt;0.05). The mean time for creation of the final imaging plane was 241 ± 31 s (2D-PM) compared to 71 ± 18 s (3D-PM) (p&lt;0.05).\u3c/p\u3e\u3cp\u3eCONCLUSIONS: 3D-PM shows similar results compared to 2D-PM, but allows faster and offline planning thereby reducing the scan time significantly. As newly developed high-resolution 3D datasets can also be used further improvement of this technology is expected.\u3c/p\u3
    corecore