3 research outputs found

    Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet?

    No full text
    International audienceColibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli

    The Polyphosphate Kinase of Escherichia coli Is Required for Full Production of the Genotoxin Colibactin

    No full text
    International audienceColibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis

    Oxygen concentration modulates colibactin production

    No full text
    International audienceUp to 25% of the E. coli strains isolated from the feces of healthy humans harbor the pks genomic island encoding the synthesis of colibactin, a genotoxic metabolite. Evidence is accumulating for an etiologic role of colibactin in colorectal cancer. Little is known about the conditions of expression of colibactin in the gut. The intestine is characterized by a unique oxygenation profile, with a steep gradient between the physiological hypoxic epithelial surface and the anaerobic lumen, which favors the dominance of obligate anaerobes. Here, we report that colibactin production is maximal under anoxic conditions and decreases with increased oxygen concentration. We show that the aerobic respiration control (ArcA) positively regulates colibactin production and genotoxicity of pks+ E. coli in response to oxygen availability. Thus, colibactin synthesis is inhibited by oxygen, indicating that the pks biosynthetic pathway is adapted to the anoxic intestinal lumen and to the hypoxic infected or tumor tissue
    corecore