33,273 research outputs found

    Distinguishing RBL-like objects and XBL-like objects with the peak emission frequency of the overall energy spectrum

    Full text link
    We investigate quantitatively how the peak emission frequency of the overall energy spectrum is at work in distinguishing RBL-like and XBL-like objects. We employ the sample of Giommi et al. (1995) to study the distribution of BL Lacertae objects with various locations of the cutoff of the overall energy spectrum. We find that the sources with the cutoff located at lower frequency are indeed sited in the RBL region of the αroαox\alpha_{ro}-\alpha_{ox} plane, while those with the cutoff located at higher frequency are distributed in the XBL region. For a more quantitative study, we employ the BL Lacertae samples presented by Sambruna et al. (1996), where, the peak emission frequency, νp\nu _p, of each source is estimated by fitting the data with a parabolic function. In the plot of αrxlogνp\alpha_{rx}-\log \nu_p we find that, in the four different regions divided by the αrx=0.75\alpha_{rx}=0.75 line and the logνp=14.7\log \nu_p=14.7 line, all the RBL-like objects are inside the upper left region, while most XBL-like objects are within the lower right region. A few sources are located in the lower left region. No sources are in the upper right region. This result is rather quantitative. It provides an evidence supporting what Giommi et al. (1995) suggested: RBL-like and XBL-like objects can be distinguished by the difference of the peak emission frequency of the overall energy spectrum.Comment: 7 pages, 2 figure

    New Models of f(R) Theories of Gravity

    Full text link
    We introduce new models of f(R) theories of gravity that are generalization of Horava-Lifshitz gravity.Comment: 16 pages, typos corrected, v2:minor changes, references adde

    Discussions on Stability of Diquarks

    Full text link
    Since the birth of the quark model, the diquark which is composed of two quarks has been considered as a substantial structure of color anti-triplet. This is not only a mathematical simplification for dealing with baryons, but also provides a physical picture where the diquark would behave as a whole object. It is natural to ask whether such a structure is sufficiently stable against external disturbance. The mass spectra of the ground states of the scalar and axial-vector diquarks which are composed of two-light (L-L), one-light-one-heavy (H-L) and two-heavy quarks (H-H) respectively have been calculated in terms of the QCD sum rules. We suggest a criterion as the quantitative standard for the stability of the diquark. It is the gap between the masses of the diquark and s0\sqrt{s_0} where s0s_0 is the threshold of the excited states and continuity, namely the larger the gap is, the more stable the diquark would be. In this work, we calculate the masses of the type H-H to complete the series of the spectra of the ground state diquarks. However, as the criterion being taken, we find that all the gaps for the various diquaks are within a small range, especially the gap for the diquark with two heavy quarks which is believed to be a stable structure, is slightly smaller than that for other two types of diquarks, therefore we conclude that because of the large theoretical uncertainty, we cannot use the numerical results obtained with the QCD sum rules to assess the stability of diquarks, but need to invoke other theoretical framework.Comment: 14 pages, 4 figure

    Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions

    Full text link
    Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the relationship between HH and canberepresentedbyacubicpolynomialfunction.Wenextfocusonthemotifrankdistributionofrecurrencenetworks,sothatwecanbetterunderstandnetworksatthelocalstructurelevel.Wefindtheinterestingsuperfamilyphenomenon,i.e.therecurrencenetworkswiththesamemotifrankpatternbeinggroupedintotwosuperfamilies.Last,wenumericallyanalyzethefractalandmultifractalpropertiesofrecurrencenetworks.Wefindthattheaveragefractaldimension can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e. the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension of recurrence networks decreases with the Hurst index HH of the associated FBMs, and their dependence approximately satisfies the linear formula 2H \approx 2 - H. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5H=0.5 possess the strongest multifractality. In addition, the dependence relationships of the average information dimension andtheaveragecorrelationdimension and the average correlation dimension on the Hurst index HH can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.

    Far-infrared optical properties of the pyrochlore spin ice compound Dy2Ti2O4

    Full text link
    Near normal incident far-infrared reflectivity spectra of [111] dysprosium titanate (Dy2Ti2O4) single crystal have been measured at different temperatures. Seven phonon modes (eight at low temperature) are identified at frequency below 1000 cm-1. Optical conductivity spectra are obtained by fitting all the reflectivity spectra with the factorized form of the dielectric function. Both the Born effective charges and the static optical primitivity are found to increase with decreasing temperature. Moreover, phonon linewidth narrowering and phonon modes shift with decreasing temperature are also observed, which may result from enhanced charge localization. The redshift of several low frequency modes is attributed to the spin-phonon coupling. All observed optical properties can be explained within the framework of nearest neighbor ferromagnetic(FM) spin ice model
    corecore