
Title Estimation of nonparametric regression models with a mixture
of Berkson and classical errors

Author(s) Yin, Z; Gao, W; Tang, ML; Tian, G

Citation Statistics & Probability Letters, 2013, v. 83 n. 4, p. 1151-1162

Issued Date 2013

URL http://hdl.handle.net/10722/191509

Rights

NOTICE: this is the author’s version of a work that was accepted
for publication in Statistics & Probability Letters. Changes
resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently
published in Statistics & Probability Letters, 2013, v. 83 n. 4, p.
1151-1162. DOI: 10.1016/j.spl.2013.01.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38035322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Estimation of nonparametric regression models with a mixture of Berkson and
classical errors

Zanhua Yina, Wei Gaoa,∗, Man-Lai Tangb, Guo-Liang Tianc

aSchool of Mathematics and Statistics, Northeast Normal University, Changchun, P. R. China
bHong Kong Baptist University, Hong Kong, P. R. China
cThe University of Hong Kong, Hong Kong, P. R. China

Abstract

We consider the estimation of nonparametric regression models with the explanatory variable being measured with
Berkson errors or with a mixture of Berkson and classical errors. By constructing a compact operator, the regression
function is the solution of an ill-posed inverse problem, and we propose an estimation procedure based on Tikhonov
regularization. Under mild conditions, the convergence rate of proposed estimator is derived. The finite-sample
properties of the estimator are investigated through simulation studies.

Keywords: Berkson error, Classical error, Deconvolution, Ill-posed problem, Kernel methods, Non-parametric
regression, Tikhonov regularization.

1. Introduction

In traditional non-parametric regression model analysis, one is interested in the following model

Y = g(X) + ϵ, (1)

where g(·) is a smooth function which we wish to estimate and ϵ is a noise variable with E(ϵ | X) = 0 and E(ϵ2|X) <
∞. Here, the explanatory variable X is usually assumed to be directly observable without errors. Both the direct
observation and error-free assumptions are however seldom true in many studies. For the violation of the error-free
assumption, Armstrong (1998) considered an environmental study which investigated the relation of mean exposure
to lead up to age 10 (denoted as X) with intelligence quotient (IQ) among 10-year-old children (denoted as Y) living
in the neighborhood of a lead smelter. Each child had one measurement made of blood lead (denoted as W), at a
random time during their life. The blood lead measurement (i.e., W) became an approximate measure of mean blood
lead over life (X). However, if we were able to make many replicate measurements (at different random time points),
the mean would be a good indicator of lifetime exposure. In other words, the measurements of X are subject to errors
and W is a perturbation of X. In this case, which is known as the classical error model, we observe an i.i.d. sample
(Yi,Wi), i = 1, . . . , n, from

Yi = g(Xi) + ϵi, Wi = Xi + εi, (2)

where (ϵi, Xi, εi), i = 1, . . . , n, are mutually independent and ε represents the classical measurement error variable.
The classical error model (2) has attracted considerable attention in the literature, and is by now well understood. See
Fan and Truong (1993), Carroll et al. (1999), Delaigle and Meister (2007), Delaigle et al. (2008) and Delaigle et al.
(2009). For additional references for non-parametric regression models with classical errors, ones may consult Carroll
et al. (2006) and the references therein.

In many studies, it is however too costly or impossible to measure X exactly or directly. Instead, a proxy W of X
is measured. For the violation of the direct observation assumption, Armstrong (1998) modified the aforementioned
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environmental study in which the children’s place of residence at age 10 (assumed known exactly) were classified into
three groups by proximity to the smelter - close, medium, far. Random blood lead samples, collected as describe in
the aforementioned design, were averaged for each group (denoted as W), and this group mean used as a proxy for
lifetime exposure for each child in the group. Here, the same approximate exposure (proxy) is used for all subjects
in the same group, and true exposures, although unknown, may be assumed to vary randomly about the proxy. This
is the well-known Berkson error model. In other words, the explanatory variable X are not directly observable and
measurements on its surrogates W are available instead. X is then a perturbation of W. In this case, we observe an
i.i.d. sample (Yi,Wi), i = 1, . . . , n, generated by

Yi = g(Xi) + ϵi, Xi = Wi + δi, (3)

where (ϵi,Wi, δi), i = 1, 2, . . . , n, are mutually independent and δ represents the Berkson measurement error variable.
The Berkson error model was first considered by Berkson (1950). Recently, several methods such as least squares
estimation method (Huwang and Huang, 2000), minimum distance estimation method (Wang, 2003, 2004) and re-
gression calibration method (Carroll et al., 2006) have been studied in the literature. However, all these work mostly
focus on specifying some parametric or semiparametric relationship between the explanatory variable and response,
and there is little work on nonparametric estimation in the setting of model (3) (e.g. Delaigle et al., 2006).

In the Berkson model (3), it is usually assumed that the observable variable W is measured with perfect accuracy.
However, this may not be true due to inaccuracy of the measurement process in some situations. In such cases,
the measurements of the proxy W are subject to errors, and data can be contaminated by a mixture of Berkson and
classical errors. To be specific, we observe a random sample of independent pairs (Yi, Vi), i = 1, . . . , n, generated by

Yi = g(Xi) + ϵi, Xi = Wi + δi, Vi = Wi + εi, (4)

where the random variables Wi ∼ fW , the berkson errors δi ∼ fδ, the classical errors εi ∼ fε and ϵi are mutually
independent, and the respective error densities fδ and fε are assumed to be known. Obversely, the classical error
model (2) and the berkson error model (3) are both included in the mixture model (4). Due to its potentially wide
applications, statistical procedures for analyzing model (4) has received more attention recently. For instance, a
regression calibration approach was proposed by Reeves et al. (1998) and Schafer et al. (2002) in a parametric
context of random exposure. Mallick et al. (2002) considered a Bayesian approach for a semi-parametric regression
function. The objective of this paper is to give a nonparametric estimator of the regression function g for the data (Yi,
Vi), i = 1, . . . , n, generated by the mixture model (4).

When both types of errors are present, nonparametric estimation of g may not be an easy task since, as explained
in Section 2, the relation that identifies g is a Fredholm integral equation of the first kind, i.e.,

m(w) =
∫

g(x) fδ(x − w) dx, (5)

where m(w) = E[Y | W = w]. The function g is the solution of equation (5), which may lead to an ill-posed
problem. Deconvolution is known to be difficult. Carroll et al. (2007) proposed a nonparametric estimator using
kernel deconvolution techniques, but its calculation is rather complicated since it requires the calculation of a double
deconvolution integral and the use of several smoothing parameters. Delaigle and Meister (2011) construct a simple
nonparametric estimator based on estimators of the derivatives of m(·), but it need assume the characteristic function
of error density fδ is the inverse of a polynomial (or the error density fδ is symmetric). In this paper, we propose a
new nonparametric estimation approach which consists of two major steps. First, we construct a compact operator
T and therefore admits a countable infinite number of eigenvalues and eigenfunctions. Second, using the Tikhonov
regularization, we develop an estimator of g based on the operator T and a deconvolution kernel estimator of m(·).
Under mild conditions, the convergence rates of the proposed estimator are derived.

This paper is organized as follows. In Section 2, we propose an estimator for the regression function g(·). In
Section 3, we derive the convergence rates of our estimator under some regularity conditions. In Section 4, we discuss
the computation for the proposed estimator. Section 5 presents some numerical results from simulation studies. A
brief discussion is given in Section 6.
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2. Methodology

Let (Y1,V1), . . . , (Yn,Vn) be a random sample from model (4). We define an operator T as follows:

(Tg)(w) =
∫

g(x) fδ(x − w) dx,

where fδ is the density of the Berkson error δ. Here and below, unqualified integrals are taken over the whole real
line. Let L2(R2) denotes the space of the square-integrable functions with respect to Lebesgue measure on R2. If the
function fδ(x − w) ∈ L2(R2), the operator T is a Hilbert–Schmidt operator. However, this may not be true in some
situations (for example, fδ is a Laplace density or normal density). Hence, the main idea of this paper is to reconstruct
T and make it compact.

To be specific, we choose two arbitrary functions ωX(x) and ωW (w) that satisfy
Condition A:

(A1) Both ωX(x) and ωW (w) are continuous and bounded density functions, and ωX(x) > 0; and
(A2)

∫ ∫
f 2
δ (x − w)ωW (w)/ωX(x) dx dw < ∞.

Define

L2(R, ωX) =

φ : R→ R, s.t. ∥ φ ∥=
(∫

φ2(x)ωX(x) dx
)1/2

< ∞
 ,

and

L2(R, ωW ) =

ψ : R→ R, s.t. ∥ ψ ∥=
(∫

ψ2(w)ωW (w) dw
)1/2

< ∞
 ,

where ∥ · ∥ denotes the norm in these spaces. We further define the operator T : L2(R, ωX)→ L2(R, ωW ) as

(Tφ)(w) =
∫

φ(x)t(x,w)ωX(x) dx,

where t(x,w) = fδ(x − w)ωW (w)/[ωX(x)ωW (w)] is called the kernel of the operator T . In fact, Condition (A2) implies
that Tφ ∈ L2(R, ωW ) for any function φ ∈ L2(R, ωX), and is sufficient condition for T to be a Hilbert–Schmidt operator
(see Section 3.2). Hence, it is easy to verify that equation (5) is equivalent to the operator equation

(Tg)(w) = m(w). (6)

According to equation (6), the function g is the solution of a Fredholm integral equation of the first kind, and this
inverse problem is known to be ill-posed and needs a regularization method (see Section 3.2). A variety of regulation
schemes are available in the literature (see e.g. Kress 1999), but we focus in this paper on the Tikhonov regularized
solution.

We define the adjoint operator T ∗ of T

(T ∗ψ)(x) =
∫

ψ(w)t(x,w)ωW (w) dw,

where ψ(w) ∈ L2(R, ωW ). Then, the Tikhonov regularized solution is

gα = (αI + T ∗T )−1T ∗m. (7)

where the penalization term α (α > 0) is the regularization parameter.
From (7), we see that to estimate g it only need to estimate m(·). Since m(w) = E(Y | W = w) and we observe

(Yi,Vi), where Vi = Wi + εi, estimating of m(·) is a classical errors-in-variables problem, and thus we can use the
deconvolution kernel estimator of Fan and Truong (1993). Let K denote a kernel function, h > 0 a bandwidth and

Kε(x) =
1

2π

∫
exp(−itx)

ϕK(t)
ϕε(t/h)

dt,
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where ϕK(·) is the Fourier transform of the kernel function K(·), ϕε(·) is the characteristic function of the classical
error ε. The deconvolution kernel estimator of m(·), derived by Fan and Truong (1993), is defined by

m̂(w) =
n∑

i=1

Kε

(w − Vi

h

)
Yi

/ n∑
i=1

Kε

(w − Vi

h

)
. (8)

Based on expression (7), we can now define our estimator of g by

ĝα = (αI + T ∗T )−1T ∗m̂. (9)

where m̂ is defined by (8). When the variance of ε in model (4) is equal to 0, which reduces to the Berkson error
model (3), we observe (Yi,Wi) directly, and m̂ reduces to the classical Nadaraya–Watson estimator.

Example 1. We assume the Berkson error δ has a normal distribution with mean zero and variance σ2
δ, then

fδ(x − w) = ϕ
( x − w
σδ

)
,

where ϕ denotes the p.d.f. of a standard normal distribution. In this case, to ensure Condition A to be valid, a simple
choice for ωW is ωW (w) = ϕ(w), and ωX can be computed as

ωX(x) =
∫

fδ(x − w)ωW (w) dw = ϕ
(
x
/√

1 + σ2
δ

)
.

Concerning the kernel of T , we have

t(x,w)ωX(x) = ϕ
( x − w
σδ

)
, and t(x,w)ωW (w) = ϕ

(w − ρx
σδ
√
ρ

)
,

where ρ = 1/(1 + σ2
δ).

Example 2. We assume the Berkson error δ has a Laplace distribution with mean zero and variance 2λ2, then

fδ(x − w) =
1

2λ
exp

(
− | x − w |

λ

)
.

Here, we can choose ωW (w) = 0.51{w ∈ [−1, 1]} and ωX(x) = 0.51{x ∈ [−1, 1]} to ensure Condition A to be valid.

3. Theoretical properties

3.1. Convergence rate of deconvolution kernel estimator m̂
In this section, we focus on the properties of the estimator m̂(·) defined in (8). For this purpose, we present the

following regular conditions which are mild and can be found in Fan and Truong (1993).
Condition B:

(B1) The characteristic function of the classical error distribution ϕε(·) does not vanish;
(B2) The density fW of W is bounded away from 0, and has bounded kth derivative;
(B3) The kernel K(·) is a square integrable k-order bounded symmetric kernel such that

∫
| xkK(x) | dx < ∞; and

(B4) The function m(·) has a continuous kth derivative.

The convergence rates of m̂(·) depend on the smoothness of the function m(·) and the regularity conditions on the
marginal distribution and the kernel function. They also depend on the tail behaviour of ϕε(t), as Fan and Truong
(1993) discussed, which can be classified into the following:

1. Super smooth of order β is

d0|t|β0 exp(−|t|β/γ) ≤| ϕε(t) |≤ d1|t|β1 exp(−|t|β/γ) as t → ∞, (10)

where d0, d1, γ and β are positive constants and β0 and β1 are constants.
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2. Ordinary smooth of order β is
d0|t|−β ≤ |ϕε(t)| ≤ d1|t|−β as t → ∞, (11)

for positive constants d0, d1 and β.

The following result under super smooth error case is obtained by applying Theorem 2 in Fan and Truong (1993).

Proposition 1. Suppose that Conditions A and B hold and that the first half inequality of (10) is satisfied. Assume
that ϕK(t) is supported on [−1, 1]. Then, for bandwidth h = d(log n)−1/β with d > (2/γ)−1/β, we have∫

[m̂(w) − m(w)]2ωW (w) dw = OP[(log n)−2k/β].

The next result under ordinary smooth error case is obtained by applying Theorem 4 in Fan and Truong (1993).

Proposition 2. Suppose that Conditions A and B hold and that the inequality of (11) is satisfied. Assume that∫
|t|β+1(|ϕK(t)| + |ϕ′K(t)|) dt < ∞ and

∫
|tβ+1ϕK(t)|2 dt < ∞. Then, for bandwidth h = O(n−1/(2k+2β+1)), we have∫

[m̂(w) − m(w)]2ωW (w) dw = OP[n−2k/(2k+2β+1)].

3.2. Convergence rate of ĝα

The main objective of this section is to derive the statistical properties of the estimator ĝα(·) from the properties of
m̂(·), T and T ∗. Following Section 2, Condition A2 amounts to assume that T and T ∗ are Hilbert–Schmidt operators,
and is a sufficient condition of compactness of T , T ∗, TT ∗ and T ∗T (see Carrasco et al., 2007, Theorem 2.34). As a
result of compactness, there exists a singular values decomposition, and the singular values of T are the square roots
of the eigenvalues of the nonnegative self-adjoint compact operator T ∗T . Let λ j, j ≥ 0 be the sequence of the nonzero
singular values of T and the two orthonormal sequences φ j of L2(R, ωX), and ψ j of L2(R, ωW ) such that (see Kress
1999, Theorem 15.16):

Tφ j = λ jψ j, T ∗ψ j = λ jφ j; T ∗Tφ j = λ
2
jφ j, TT ∗ψ j = λ

2
jψ j, for j ≥ 0.

Since fδ, ωX and ωW are given, we can consider the eigenvalues and eigenfunctions as known.
By Picard theorem (see, Kress, 1999), the solution (6) can be represented from the singular value decomposition

of T as

g =
∞∑
j=1

⟨m, ψ j⟩
λ j

φ j, with ⟨m, ψ j⟩ =
∫

m(w)ψ j(w)ωW (w) dw.

Here and blow, we denote by ⟨·, ·⟩ the scalar product in L2(R, ωX) or L2(R, ωW ). Above formula clearly demonstrates
the ill-posed nature of the equation (6). If we perturb m by mτ = m + τψ j, we obtain the solution gτ = g + τφ j/λ j

which can be infinitely far from the true solution g due to the fact that the singular values tend to zero. Looking for one
regularized solution is a classical way to overcome this problem. In this paper, we consider the Tikhonov regularized
solution gα at (7).

Note that the regularization bias is

g − gα = [I − (αI + T ∗T )−1T ∗T ]g

=

∞∑
j=1

α

α + λ2
j

⟨g, φ j⟩φ j.

In order to control the speed of convergence to zero of the regularization bias g − gα, we introduce the following
regularity space Φγ for γ > 0:

Φγ =

φ ∈ L2(R, ωX) s.t.
∞∑
j=1

⟨φ, φ j⟩
λ

2γ
j

< +∞

 .
We then obtain the following result by applying Proposition 3.11 in Carrasco et al. (2007).
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Proposition 3. Under Condition A, if g ∈ Φγ for 0 < γ ≤ 2, we have∫
[g(x) − gα(x)]2ωX(x) dx = O(αγ).

Therefore, when the regularization parameter α is pushed towards zero, the smoother the function g of interest
(i.e. g ∈ Φγ for larger γ) is , the faster the rate of convergence to zero of the regularization bias will be. Now we state
the main result of the paper.

Theorem 3.1. Suppose the conditions of Proposition 1 hold. If g ∈ Φγ for 0 < γ ≤ 2, then we have∫
[ĝα(x) − g(x)]2ωX(x) dx = OP

[ 1
α2 × (log n)−2k/β + αγ

]
.

In particular, when α = O[(log n)−2k/(2β+γβ)], we have∫
[ĝα(x) − g(x)]2ωX(x) dx = OP

[
(log n)−2kγ/(2β+γβ)].

Proof: Notice that gα = (αI + T ∗T )−1T ∗m, then we have

ĝα − g = ĝα − gα + gα − g.

By Proposition 3: ∫
[g(x) − gα(x)]2ωX(x) dx = O(αγ).

To asses the order of ĝα − gα, it is worth rewriting it as:

ĝα − gα = (αI + T ∗T )−1(T ∗m̂ − T ∗m)

=

∞∑
j=1

1
α + λ2

j

⟨m̂ − m,Tφ j⟩φ j

=

∞∑
j=1

λ j

α + λ2
j

⟨m̂ − m, ψ j⟩φ j.

Since {φ j} is orthonormal sequence on L2(R, ωX), we have∫
[ĝα(x) − gα(x)]2ωX(x) dx =

∞∑
j=1

λ2
j

(α + λ2
j )

2
⟨m̂ − m, ψ j⟩2.

From the properties of scalar product, we have

⟨m̂ − m, ψ j⟩2 =

{∫
[m̂(w) − m(w)]ψ j(w)ωW (w) dw

}2

≤
∫

[m̂(w) − m(w)]2ωW (w) dw
∫

ψ2
j (w)ωW (w) dw.

Thus, by Proposition 1, we have ⟨m̂−m, ψ j⟩2 = OP[(log n)−2k/β]. Since
∑∞

j=1 λ
2
j/(α+λ

2
j )

2 = O(1/α2) (see e.g. Groetsch
1984), then we have ∫

[ĝα(x) − gα(x)]2ωX(x) dx = OP

[ 1
α2 × (log n)−2k/β

]
.

The desired result follows immediately.
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From Theorem 3.1, when the characteristic function of the classical error satisfies inequality (10), we obtain
a slower logarithmic rate which corresponds to the usual rate attained in nonparametric deconvolution from super
smooth error distribution. Similarly, when the characteristic function of the classical error satisfies inequality (11), we
have the following result.

Theorem 3.2. Suppose the conditions of Proposition 2 hold. If g ∈ Φγ for 0 < γ ≤ 2, then we have∫
[ĝα(x) − g(x)]2ωX(x) dx = OP

[ 1
α2 n−2k/(2k+2β+1) + αγ

]
.

In particular, for α = O[n−2k/[(2k+2β+1)(γ+2)]], we have∫
[ĝα(x) − g(x)]2ωX(x) dx = OP

[
n−2kγ/[(2k+2β+1)(γ+2)]].

By some modifications of the proof of Theorem 3.1, the proof of Theorem 3.2 is straightforward and is omitted.

4. Computation

In this section, we discuss the computation of the estimator ĝα. This estimator is a solution to the equation:

(αI + T ∗T )g = T ∗m̂,

or equivalently

ĝα(x) =
∞∑
j=1

1
α + λ2

j

⟨T ∗m̂, φ j⟩φ j(x). (12)

Unfortunately, computing the estimator (12) requires specifying expression of the eigenvalues and eigenfunctions.
Blow, we explain the estimate approach of the eigenvalues and eigenfunctions which was adopted by Carrasco and
Florens (2009).

Using the importance sampling, T can be estimated by

(T̂φ)(w) =
1
B

B∑
k=1

φ(xk)
fδ(xk − w)
ωX(xk)

,

where {xk}, k = 1, . . . , B, is an i.i.d. sample drawn from ωX . Similarly, T ∗ can be approached by

(T̂ ∗ψ)(x) =
1
B

B∑
k=1

ψ(wk)
fδ(x − wk)
ωX(x)

,

where {wk}, k = 1, . . . , B, is an i.i.d. sample drawn from ωW .
Therefore (T ∗Tφ)(x) can be approximated by

1
B

B∑
k=1

[ 1
B

B∑
l=1

φ(xl)
fδ(xl − wk)
ωX(xl)

] fδ(x − wk)
ωX(x)

.

Note that T ∗Tφ j = λ
2
jφ j. We can calculate the eigenvalues and eigenfunctions of above operator by solving

1
B

B∑
k=1

[ 1
B

B∑
l=1

φ j(xl)
fδ(xl − wk)
ωX(xl)

] fδ(x − wk)
ωX(x)

= λ2
jφ j(x). (13)

Hence φ j(x) is necessarily of the form: φ j(x) =
∑B

k=1 θ
j
k fδ(x − wk)/ωX(x). Replacing in (13), we see that solving (13)

is equivalent to finding the B nonzero eigenvalues λ̂2
1, . . . , λ̂

2
B and eigenvectors θ̂1, . . . , θ̂B of a B × B-matrix M with

principle element

Mk,l =
1
B2

B∑
s=1

fδ(xs − wk) fδ(xs − wl)
ω2

X(xs)
.
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Figure 1: Median curves of 500 estimators of regression functions (a) (top) and (b) (bottom) for samples of size n = 250 in the mixture model and
δ ∼ Laplace and ε ∼ N(0, σ2

ε) (left) or δ ∼ N(0, σ2
ε) and ε ∼ Laplace (right) with (σ2

δ/σ
2
W , σ

2
ε/σ

2
W ) = (0.1, 0.2). The solid, dashed, and dotted

curves represent g(x), ĝα(x) and ĝI (x) respectively.

Then the estimators of eigenfunctions are

φ̂ j(x) =
B∑

k=1

θ̂
j
k fδ(x − wk)/ωX(x), j = 1, . . . , B,

associated with θ̂1, · · · , θ̂B. The φ̂ j need to be orthonormalized.
In addition, the term

⟨T ∗m̂, φ j⟩ =
∫

(T ∗m̂)(x)φ j(x)ωX(x) dx

can be estimated by

̂⟨T ∗m̂, φ j⟩ =
1
B

B∑
k=1

(T̂ ∗m̂)(xk)φ̂ j(xk).

Hence, by expression (12), we obtain ĝα:

ĝα(x) =
B∑

j=1

1
α + λ̂2

j

̂⟨T ∗m̂, φ j⟩φ̂ j(x).
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5. Simulation studies

In this section, we conduct several simulations to numerically evaluate performances of the proposed estimator.
To implement our method (9), the smoothing parameter h and the regularization parameter α should be chosen. In our
simulation studies, we use the following two-dimensional cross-validation (CV) approach, selecting (h, α) as

(ĥ, α̂) = arg min
(h,α)

n∑
i=1

Yi − ĝα(Vi)
1 − n−1 ∑n

i=1 ĝα(Vi)
. (14)

To compare the proposed estimator with existing estimators, we consider the naive kernel estimator (denoted as ĝI),
which is the standard Nadaraya–Watson estimator based on direct data from (Yi,Vi), i = 1, . . ., n. It should be pointed
out that ĝI can serve as a gold standard in the simulation study, even though it is practically unachievable due to
measurement errors. The performance of estimator gest is assessed by using the square root of average square errors
(RASE)

RASE =

 1
M

M∑
s=1

[gest(us) − g(us)]2


1/2

,

where us, s = 1, . . . , M, are grid points at which gest(us) is evaluated.
We applied our estimator to data from models (3) and (4), where the regression functions g taken from the examples

of Carroll et al. (2007):

(a) g(x) = 5 sin(2x) exp(−16x2/50), ϵ ∼ N(0, 0.15), W ∼ N(0, 0.5) (sinusoidal), and,
(b) g(x) = (2x2 + 0.4x + 1)−1, ϵ ∼ N(0, 0.01), W ∼ N(0, 2) (sharp unimodal).

We took the errors δ and ε to be either normal or Laplace distribution with zero mean. Specially, if δ ∼ Normal
(or δ ∼ Laplace), we chose ωX and ωW as in Example 1 (or Example 2). For pure Berkson error model (3), we
observed (Yi,Wi) directly (i.e., Vi = Wi), and used the Nadaraya–Watson estimator with a standard normal kernel
to calculate m(·). For mixture model (4), we calculated m(·) via (8), and adopt the kernel K(·) corresponding to
ϕK(t) = (1 − t2)81{t ∈ [−1, 1]}, which is commonly used in deconvolution problems.

In our simulations we consider sample sizes n = 50 or 250, and in each case 500 simulated data sets were generated
from model (3) or model (4). We calculated the corresponding 500 estimators of the curve g, using our method or
using the naive kernel estimator, and reported the corresponding 500 calculated RASEs. To calculate ĝα, we selected
the parameters (h, α) as in (14). For ĝI , we used the standard normal kernel, and the bandwidth was selected by
generalized cross-validation (GCV).

Table 1: The RASE comparison for the estimators ĝα(x) and ĝI (x). Let κ = (σ2
δ/σ

2
W , σ

2
ε/σ

2
W ), and simply denote δ ∼ Normal and ε ∼ Laplace by

(N, L), and other similar.
ĝα(x) ĝI(x)

curve n κ (L, L) (L, N) (N, L) (N, N) (L, L) (L, N) (N, L) (N, N)
(a) 50 (0.1,0.1) 0.9306 0.9941 1.1415 1.0315 1.1197 1.1228 1.1162 1.2631

(0.1,0.2) 0.9587 1.1225 1.1913 1.2179 1.4099 1.4111 1.4145 1.5519
(0.1,0.3) 1.0272 1.1913 1.5425 1.4690 1.7224 1.6978 1.6255 1.7025

250 (0.1,0.1) 0.8159 0.8205 0.8463 0.9596 0.9108 1.0534 1.0590 0.9896
(0.1,0.2) 0.8368 0.9988 1.0096 1.1406 1.1072 1.3749 1.3320 1.3256
(0.1,0.3) 0.8765 1.0699 1.2499 1.2632 1.4324 1.6040 1.5587 1.5086

(b) 50 (0.1,0.1) 0.1020 0.1153 0.1192 0.1300 0.1162 0.1187 0.1400 0.1676
(0.1,0.2) 0.1183 0.1269 0.1285 0.1637 0.1453 0.1463 0.1697 0.1718
(0.1,0.3) 0.1261 0.1356 0.1470 0.1726 0.1643 0.1817 0.1884 0.2216

250 (0.1,0.1) 0.1010 0.1030 0.1175 0.1100 0.1105 0.1140 0.1187 0.1179
(0.1,0.2) 0.1153 0.1237 0.1183 0.1378 0.1375 0.1386 0.1323 0.1428
(0.1,0.3) 0.1217 0.1319 0.1364 0.1411 0.1600 0.1738 0.1622 0.1661
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Figure 2: Median curves of 500 estimators of regression functions (a) (top) and (b) (bottom) for samples of size n = 250 in the pure Berkson model
and δ ∼ Laplace (left) or δ ∼ N(0, σ2

ε) (right) with σ2
δ = 0.1×σ2

W . The solid, dashed, and dotted curves represent g(x), ĝα(x) and ĝI (x) respectively.

Figure 1 shows the regression function curve g(x), the curves of the medians of 500 estimates ĝα(x) and ĝI(x)
under different settings of δ and ε for sample size n = 250, in the two examples (a) and (b) respectively. From
this figure, we see clearly that the proposed estimator ĝα(x) and smoothing parameter selection method appeared to
perform very well for the test functions considered in this study. In comparison, ĝI(x) clearly targeted the wrong curve
as we expected.

Table 1 summarizes the results shown in Figure 1 numerically. The estimated RASE which were evaluated at
101 grid points of x are presented. Our results show that the estimator ĝα(x) worked better than the naive estimator
ĝI(x) in all cases. Also, as the sample size increases, the quality of the estimator has a significant improvement (i.e.,
the corresponding RASEs decrease). For any nonparametric method in measurement error regression problem, the
quality of the estimator also depends on the discrepancy of the observed sample. That is, the performance of the
estimator depends on the variances of measurement error. Here, we compared the results for different variance ratios
(σ2

δ/σ
2
W , σ

2
ε/σ

2
W ). It is noteworthy that the effect of the variances on the estimator performance was obvious.

Figure 2 shows the median curves of 500 estimators of regression functions (a) and (b) for samples of size n = 250
in the pure Berkson model, when δ ∼ Laplace or δ ∼ N(0, σ2

ε) with σ2
δ = 0.1 × σ2

W . As expected, our proposed
estimator substantially outperformed the estimator that completely ignores any measurement errors. Our results show
that our proposed estimator also works well in the pure Berkson model.

6. Discussion

In this paper, we propose a new method for estimating non-parametric regression models with the explanatory
variable being measured with pure Berkson errors or with a mixture of Berkson and classical errors. We start by

10



deriving the conditional expectation of unknown objective regression function given the proxy variable that help us
obtaining a Fredholm integral equation of the first kind. So the regression function is the solution of an ill-posed
problem and we propose an estimator based on Tikhonov regularization. The difficulty with our approach comes from
the fact that how to choose two available density functions ωX(x) and ωW (w) which are able to construct a compact
operator T . This is of future research interest.

References

[1] Armstrong, B.G. (1998) Effect of measurement error on epidemiological studies of environmental and occupational exposures. Occup.
Environ. Med., 55, 651–656.

[2] Berkson, J. (1950) Are there two regression problems? J. Am. Statist. Ass., 45, 164–180.
[3] Carrasco, M. and Florens, J.P. (2009) Spectral method for deconvolving a density. forthcoming Econometric Theory.
[4] Carrasco, M., Florens, J.P. and Renault, E. (2007) Linear Inverse Problems in Structural Econometrics: Estimation Based on Spectral

Decomposition and Regulation, Handbook of Econometrics, Elsevier, North Holland, 5633–5751.
[5] Carroll, R.J., Delaigle, A. and Hall, P. (2007) Nonparametric regression estimation from data contaminated by a mixture of Berkson and

classical errors. J. R. Statist. Soc. B, 69, 859–878.
[6] Carroll, R.J., Maca, J.D. and Ruppert, D. (1999) Nonparametric regression in the presence of measurement error. Biometrika, 86, 541–554.
[7] Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006) Measurement Error in Nonlinear Models, second edition. Chapman

and Hall CRC Press, Boca Raton.
[8] Delaigle, A., Fan, J. and Carroll, R.J. (2009) A Design-adaptive Local Polynomial Estimator for the Errors-in-Variables Problem. J. Am.

Statist. Ass., 104, 348–359.
[9] Delaigle, A., Hall, P. and Meister, A. (2008) On deconvolution with repeated measurements. Ann. Statist., 36, 665–685.

[10] Delaigle, A., Hall, P. and Qiu, P. (2006) Nonparametric methods for solving the Berkson errors-in-variables problem. J. R. Statist. Soc. B ,
68, 201–220.

[11] Delaigle, A., and Meister, A. (2007) Nonparametric regression estimation in the heteroscedastic errors-in-variables problem. J. Am. Statist.
Ass., 102, 1416–1426.

[12] Delaigle, A., and Meister, A. (2011) Rate-optimal nonparametric estimation in classical and Berkson errors-in-variables problems. J. Statist.
Pla. Inf., 141, 102–114.

[13] Fan, J. and Truong, Y.K. (1993) Nonparametric regression with errors in variables. Ann. Statist., 21, 1900–1925.
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