66,504 research outputs found

    Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

    Get PDF
    Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces

    Shock and vibration response of multistage structure

    Get PDF
    Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity

    Seismic analysis of 70 Ophiuchi A: A new quantity proposed

    Full text link
    The basic intent of this paper is to model 70 Ophiuchi A using the latest asteroseismic observations as complementary constraints and to determine the fundamental parameters of the star. Additionally, we propose a new quantity to lift the degeneracy between the initial chemical composition and stellar age. Using the Yale stellar evolution code (YREC7), we construct a series of stellar evolutionary tracks for the mass range MM = 0.85 -- 0.93 M⊙M_{\odot} with different composition YiY_{i} (0.26 -- 0.30) and ZiZ_{i} (0.017 -- 0.023). Along these tracks, we select a grid of stellar model candidates that fall within the error box in the HR diagram to calculate the theoretical frequencies, the large- and small- frequency separations using the Guenther's stellar pulsation code. Following the asymptotic formula of stellar pp-modes, we define a quantity r01r_{01} which is correlated with stellar age. Also, we test it by theoretical adiabatic frequencies of many models. Many detailed models of 70 Ophiuchi A have been listed in Table 3. By combining all non-asteroseismic observations available for 70 Ophiuchi A with these seismological data, we think that Model 60, Model 125 and Model 126, listed in Table 3, are the optimum models presently. Meanwhile, we predict that the radius of this star is about 0.860 -- 0.865 R⊙R_{\odot} and the age is about 6.8 -- 7.0 Gyr with mass 0.89 -- 0.90 M⊙M_{\odot}. Additionally, we prove that the new quantity r01r_{01} can be a useful indicator of stellar age.Comment: 23 pages, 5 figures, accepted by New Astronom

    Asteroseismic study of solar-like stars: A method of estimating stellar age

    Full text link
    Asteroseismology, as a tool to use the indirect information contained in stellar oscillations to probe the stellar interiors, is an active field of research presently. Stellar age, as a fundamental property of star apart from its mass, is most difficult to estimate. In addition, the estimating of stellar age can provide the chance to study the time evolution of astronomical phenomena. In our poster, we summarize our previous work and further present a method to determine age of low-mass main-sequence star.Comment: 2 pages, 1 figures, submitted to IAUS25

    SATMC: Spectral Energy Distribution Analysis Through Markov Chains

    Full text link
    We present the general purpose spectral energy distribution (SED) fitting tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models of the user's choice to infer intrinsic parameters, generate confidence levels and produce the posterior parameter distribution. Here we describe the key features of SATMC from the underlying MCMC engine to specific features for handling SED fitting. We detail several test cases of SATMC, comparing results obtained to traditional least-squares methods, which highlight its accuracy, robustness and wide range of possible applications. We also present a sample of submillimetre galaxies that have been fitted using the SED synthesis routine GRASIL as input. In general, these SMGs are shown to occupy a large volume of parameter space, particularly in regards to their star formation rates which range from ~30-3000 M_sun yr^-1 and stellar masses which range from ~10^10-10^12 M_sun. Taking advantage of the Bayesian formalism inherent to SATMC, we also show how the fitting results may change under different parametrizations (i.e., different initial mass functions) and through additional or improved photometry, the latter being crucial to the study of high-redshift galaxies.Comment: 17 pages, 11 figures, MNRAS accepte
    • …
    corecore