45,528 research outputs found

    Structure of excited vortices with higher angular momentum in Bose-Einstein condensates

    Full text link
    The structure of vortices in Bose-Einstein condensed atomic gases is studied taking into account many-body correlation effects. It is shown that for excited vortices the particle density in the vortex core increases as the angular momentum of the system increases. The core density can increase by several times with only a few percent change in the angular momentum. This result provides an explanation for the observations in which the measured angular momentum is higher than the estimation based on counting the number of vortices, and the visibility of the vortex cores is simultaneously reduced. The calculated density profiles for the excited vortices are in good agreement with experimental measurements.Comment: 4 pages, 1 figur

    Are survey stock price forecasts anchored by fundamental forecasts? A long-run perspective

    Get PDF
    This paper firstly shows that a wide range of asset pricing models, including full information and Bayesian rational expectations models, typically imply that agents use the long-run cointegration relationship between stock prices and fundamentals to forecast future stock prices. However, using several widely used survey forecast datasets, we provide robust new evidence that survey stock price forecasts are not cointegrated with forecasts of fundamentals (aggregate consumption, dividend, and output), both at the consensus and individual level. We argue that it is crucial to relax investors’ common knowledge of the equilibrium pricing function to reconcile this finding

    Geometry dependence of the clogging transition in tilted hoppers

    Get PDF
    We report the effect of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D. For such systems, there exists a critical aperture size Dc at which there is a divergence in the time for a flow to clog. To better understand the origins of Dc, we perturb the system by tilting the hopper an angle Q and mapping out a clogging phase diagram as a function of Q and D. The clogging transition demarcates the boundary between the freely-flowing (large D, small Q) and clogging (small D, large Q) regimes. We investigate how the system geometry affects Dc by mapping out this phase diagram for hoppers with either a circular hole or a rectangular narrow slit. Additionally, we vary the grain shape, investigating smooth spheres (glass beads), compact angular grains (beach sand), disk-like grains (lentils), and rod-like grains (rice). We find that the value of Dc grows with increasing Q, diverging at pi-Qr where Qr is the angle of repose. For circular apertures, the shape of the clogging transition is the same for all grain types. However, this is not the case for the narrow slit apertures, where the rate of growth of the critical hole size with tilt angle depends on the material

    The Chromo-Dielectric Soliton Model: Quark Self Energy and Hadron Bags

    Get PDF
    The chromo-dielectric soliton model (CDM) is Lorentz- and chirally-invariant. It has been demonstrated to exhibit dynamical chiral symmetry breaking and spatial confinement in the locally uniform approximation. We here study the full nonlocal quark self energy in a color-dielectric medium modeled by a two parameter Fermi function. Here color confinement is manifest. The self energy thus obtained is used to calculate quark wave functions in the medium which, in turn, are used to calculate the nucleon and pion masses in the one gluon exchange approximation. The nucleon mass is fixed to its empirical value using scaling arguments; the pion mass (for massless current quarks) turns out to be small but non-zero, depending on the model parameters.Comment: 24 pages, figures available from the author

    Creep via dynamical functional renormalization group

    Full text link
    We study a D-dimensional interface driven in a disordered medium. We derive finite temperature and velocity functional renormalization group (FRG) equations, valid in a 4-D expansion. These equations allow in principle for a complete study of the the velocity versus applied force characteristics. We focus here on the creep regime at finite temperature and small velocity. We show how our FRG approach gives the form of the v-f characteristics in this regime, and in particular the creep exponent, obtained previously only through phenomenological scaling arguments.Comment: 4 pages, 3 figures, RevTe

    Transverse Magnetoresistance of GaAs/AlGaAs Heterojunctions in the Presence of Parallel Magnetic Fields

    Full text link
    We have calculated the resistivity of a GaAs\slash AlGaAs heterojunction in the presence of both an in--plane magnetic field and a weak perpendicular component using a semiclassical Boltzmann transport theory. These calculations take into account fully the distortion of the Fermi contour which is induced by the parallel magnetic field. The scattering of electrons is assumed to be due to remote ionized impurities. A positive magnetoresistance is found as a function of the perpendicular component, in good qualitative agreement with experimental observations. The main source of this effect is the strong variation of the electronic scattering rate around the Fermi contour which is associated with the variation in the mean distance of the electronic states from the remote impurities. The magnitude of the positive magnetoresistance is strongly correlated with the residual acceptor impurity density in the GaAs layer. The carrier lifetime anisotropy also leads to an observable anisotropy in the resistivity with respect to the angle between the current and the direction of the in--plane magnetic field.Comment: uuencoded file containing a 26 page RevTex file and 14 postscript figures. Submitted to Phys. Rev.

    Measurements of Heavy Flavor and Di-electron Production at STAR

    Full text link
    Heavy quarks are produced early in the relativistic heavy ion collisions, and provide an excellent probe into the hot and dense nuclear matter created at RHIC. In these proceedings, we will discuss recent STAR measurements of heavy flavor production, to investigate the heavy quark interaction with the medium. Electromagnetic probes, such as electrons, provide information on the various stages of the medium evolution without modification by final stage interactions. Di-electron production measurements by STAR will also be discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201

    Finite-size scaling of synchronized oscillation on complex networks

    Full text link
    The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k)∼k−γP(k)\sim k^{-\gamma} at large kk, we found that the finite size exponent νˉ\bar{\nu} takes on the value 5/2 when γ>5\gamma>5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3<γ<53<\gamma <5), νˉ\bar{\nu} and the order parameter exponent β\beta depend on γ\gamma. The analytic expressions for these exponents obtained from the mean field theory are shown to be in excellent agreement with data from extensive numerical simulations.Comment: 7 page

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio
    • …
    corecore