45,528 research outputs found
Structure of excited vortices with higher angular momentum in Bose-Einstein condensates
The structure of vortices in Bose-Einstein condensed atomic gases is studied
taking into account many-body correlation effects. It is shown that for excited
vortices the particle density in the vortex core increases as the angular
momentum of the system increases. The core density can increase by several
times with only a few percent change in the angular momentum. This result
provides an explanation for the observations in which the measured angular
momentum is higher than the estimation based on counting the number of
vortices, and the visibility of the vortex cores is simultaneously reduced. The
calculated density profiles for the excited vortices are in good agreement with
experimental measurements.Comment: 4 pages, 1 figur
Are survey stock price forecasts anchored by fundamental forecasts? A long-run perspective
This paper firstly shows that a wide range of asset pricing models, including full information and Bayesian rational expectations models, typically imply that agents use the long-run cointegration relationship between stock prices and fundamentals to forecast future stock prices. However, using several widely used survey forecast datasets, we provide robust new evidence that survey stock price forecasts are not cointegrated with forecasts of fundamentals (aggregate consumption, dividend, and output), both at the consensus and individual level. We argue that it is crucial to relax investors’ common knowledge of the equilibrium pricing function to reconcile this finding
Geometry dependence of the clogging transition in tilted hoppers
We report the effect of system geometry on the clogging of granular material
flowing out of flat-bottomed hoppers with variable aperture size D. For such
systems, there exists a critical aperture size Dc at which there is a
divergence in the time for a flow to clog. To better understand the origins of
Dc, we perturb the system by tilting the hopper an angle Q and mapping out a
clogging phase diagram as a function of Q and D. The clogging transition
demarcates the boundary between the freely-flowing (large D, small Q) and
clogging (small D, large Q) regimes. We investigate how the system geometry
affects Dc by mapping out this phase diagram for hoppers with either a circular
hole or a rectangular narrow slit. Additionally, we vary the grain shape,
investigating smooth spheres (glass beads), compact angular grains (beach
sand), disk-like grains (lentils), and rod-like grains (rice). We find that the
value of Dc grows with increasing Q, diverging at pi-Qr where Qr is the angle
of repose. For circular apertures, the shape of the clogging transition is the
same for all grain types. However, this is not the case for the narrow slit
apertures, where the rate of growth of the critical hole size with tilt angle
depends on the material
The Chromo-Dielectric Soliton Model: Quark Self Energy and Hadron Bags
The chromo-dielectric soliton model (CDM) is Lorentz- and chirally-invariant.
It has been demonstrated to exhibit dynamical chiral symmetry breaking and
spatial confinement in the locally uniform approximation. We here study the
full nonlocal quark self energy in a color-dielectric medium modeled by a two
parameter Fermi function. Here color confinement is manifest. The self energy
thus obtained is used to calculate quark wave functions in the medium which, in
turn, are used to calculate the nucleon and pion masses in the one gluon
exchange approximation. The nucleon mass is fixed to its empirical value using
scaling arguments; the pion mass (for massless current quarks) turns out to be
small but non-zero, depending on the model parameters.Comment: 24 pages, figures available from the author
Creep via dynamical functional renormalization group
We study a D-dimensional interface driven in a disordered medium. We derive
finite temperature and velocity functional renormalization group (FRG)
equations, valid in a 4-D expansion. These equations allow in principle for a
complete study of the the velocity versus applied force characteristics. We
focus here on the creep regime at finite temperature and small velocity. We
show how our FRG approach gives the form of the v-f characteristics in this
regime, and in particular the creep exponent, obtained previously only through
phenomenological scaling arguments.Comment: 4 pages, 3 figures, RevTe
Transverse Magnetoresistance of GaAs/AlGaAs Heterojunctions in the Presence of Parallel Magnetic Fields
We have calculated the resistivity of a GaAs\slash AlGaAs heterojunction in
the presence of both an in--plane magnetic field and a weak perpendicular
component using a semiclassical Boltzmann transport theory. These calculations
take into account fully the distortion of the Fermi contour which is induced by
the parallel magnetic field. The scattering of electrons is assumed to be due
to remote ionized impurities. A positive magnetoresistance is found as a
function of the perpendicular component, in good qualitative agreement with
experimental observations. The main source of this effect is the strong
variation of the electronic scattering rate around the Fermi contour which is
associated with the variation in the mean distance of the electronic states
from the remote impurities. The magnitude of the positive magnetoresistance is
strongly correlated with the residual acceptor impurity density in the GaAs
layer. The carrier lifetime anisotropy also leads to an observable anisotropy
in the resistivity with respect to the angle between the current and the
direction of the in--plane magnetic field.Comment: uuencoded file containing a 26 page RevTex file and 14 postscript
figures. Submitted to Phys. Rev.
Measurements of Heavy Flavor and Di-electron Production at STAR
Heavy quarks are produced early in the relativistic heavy ion collisions, and
provide an excellent probe into the hot and dense nuclear matter created at
RHIC. In these proceedings, we will discuss recent STAR measurements of heavy
flavor production, to investigate the heavy quark interaction with the medium.
Electromagnetic probes, such as electrons, provide information on the various
stages of the medium evolution without modification by final stage
interactions. Di-electron production measurements by STAR will also be
discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201
Finite-size scaling of synchronized oscillation on complex networks
The onset of synchronization in a system of random frequency oscillators
coupled through a random network is investigated. Using a mean-field
approximation, we characterize sample-to-sample fluctuations for networks of
finite size, and derive the corresponding scaling properties in the critical
region. For scale-free networks with the degree distribution at large , we found that the finite size exponent
takes on the value 5/2 when , the same as in the globally coupled
Kuramoto model. For highly heterogeneous networks (),
and the order parameter exponent depend on . The analytic
expressions for these exponents obtained from the mean field theory are shown
to be in excellent agreement with data from extensive numerical simulations.Comment: 7 page
Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene
The symmetry group analysis is applied to classify the phonon modes of
-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly
their infra-red and Raman properties. The dispersions of various phonon modes
are calculated in a multi-layer vibrational model, which is generalized from
the lattice vibrational potentials of graphene to including the inter-layer
interactions in NSGL's. The experimentally reported red shift phenomena in the
layer number dependence of the intra-layer optical C-C stretching mode
frequencies are interpreted. An interesting low frequency inter-layer optical
mode is revealed to be Raman or Infra-red active in even or odd NSGL's
respectively. Its frequency shift is sensitive to the layer number and
saturated at about 10 layers.Comment: enlarged versio
- …