16 research outputs found

    Thermal rounding of the depinning transition

    Full text link
    We study thermal effects at the depinning transition by numerical simulations of driven one-dimensional elastic interfaces in a disordered medium. We find that the velocity of the interface, evaluated at the critical depinning force, can be correctly described with the power law vTψv\sim T^\psi, where ψ\psi is the thermal exponent. Using the sample-dependent value of the critical force, we precisely evaluate the value of ψ\psi directly from the temperature dependence of the velocity, obtaining the value ψ=0.15±0.01\psi = 0.15 \pm 0.01. By measuring the structure factor of the interface we show that both the thermally-rounded and the T=0 depinning, display the same large-scale geometry, described by an identical divergence of a characteristic length with the velocity ξvν/β\xi \propto v^{-\nu/\beta}, where ν\nu and β\beta are respectively the T=0 correlation and depinning exponents. We discuss the comparison of our results with previous estimates of the thermal exponent and the direct consequences for recent experiments on magnetic domain wall motion in ferromagnetic thin films.Comment: 6 pages, 3 figure

    Functional renormalization group for anisotropic depinning and relation to branching processes

    Full text link
    Using the functional renormalization group, we study the depinning of elastic objects in presence of anisotropy. We explicitly demonstrate how the KPZ-term is always generated, even in the limit of vanishing velocity, except where excluded by symmetry. We compute the beta-function to one loop taking properly into account the non-analyticity. This gives rise to additional terms, missed in earlier studies. A crucial question is whether the non-renormalization of the KPZ-coupling found at 1-loop order extends beyond the leading one. Using a Cole-Hopf-transformed theory we argue that it is indeed uncorrected to all orders. The resulting flow-equations describe a variety of physical situations. A careful analysis of the flow yields several non-trivial fixed points. All these fixed points are transient since they possess one unstable direction towards a runaway flow, which leaves open the question of the upper critical dimension. The runaway flow is dominated by a Landau-ghost-mode. For SR elasticity, using the Cole-Hopf transformed theory we identify a non-trivial 3-dimensional subspace which is invariant to all orders and contains all above fixed points as well as the Landau-mode. It belongs to a class of theories which describe branching and reaction-diffusion processes, of which some have been mapped onto directed percolation.Comment: 20 pages, 30 figures, revtex

    Anisotropic Interface Depinning - Numerical Results

    Full text link
    We study numerically a stochastic differential equation describing an interface driven along the hard direction of an anisotropic random medium. The interface is subject to a homogeneous driving force, random pinning forces and the surface tension. In addition, a nonlinear term due to the anisotropy of the medium is included. The critical exponents characterizing the depinning transition are determined numerically for a one-dimensional interface. The results are the same, within errors, as those of the ``Directed Percolation Depinning'' (DPD) model. We therefore expect that the critical exponents of the stochastic differential equation are exactly given by the exponents obtained by a mapping of the DPD model to directed percolation. We find that a moving interface near the depinning transition is not self-affine and shows a behavior similar to the DPD model.Comment: 9 pages, 13 figures, REVTe

    Interface Depinning in the Absence of External Driving Force

    Full text link
    We study the pinning-depinning phase transition of interfaces in the quenched Kardar-Parisi-Zhang model as the external driving force FF goes towards zero. For a fixed value of the driving force we induce depinning by increasing the nonlinear term coefficient λ\lambda, which is related to lateral growth, up to a critical threshold. We focus on the case in which there is no external force applied (F=0) and find that, contrary to a simple scaling prediction, there is a finite value of λ\lambda that makes the interface to become depinned. The critical exponents at the transition are consistent with directed percolation depinning. Our results are relevant for paper wetting experiments, in which an interface gets moving with no external driving force.Comment: 4 pages, 3 figures included, uses epsf. Submitted to PR

    2-loop Functional Renormalization Group Theory of the Depinning Transition

    Full text link
    We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop beta-function and show the generation of "irreversible" anomalous terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent zeta and dynamical exponent z to order epsilon^2. This allows to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3 is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 + 0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735 epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in reasonable agreement with the most recent simulations. The high value of zeta approximately 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex

    Barkhausen avalanches in anisotropic ferromagnets with 180180^\circ domain walls

    Full text link
    We show that Barkhausen noise in two-dimensional disordered ferromagnets with extended domain walls is characterized by the avalanche size exponent τs=1.54\tau_s =1.54 at low disorder. With increasing disorder the characteristic domain size is reduced relative to the system size due to nucleation of new domains and a dynamic phase transition occurs to the scaling behavior with τs=1.30\tau_s=1.30. The exponents decrease at finite driving rate. The results agree with recently observed behavior in amorphous Metglas and Fe-Co-B ribbons when the applied anisotropic stress is varied.Comment: Changes in the text and references, To appear in Phys. Rev.

    Statistical Theory for the Kardar-Parisi-Zhang Equation in 1+1 Dimension

    Full text link
    The Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimension dynamically develops sharply connected valley structures within which the height derivative {\it is not} continuous. There are two different regimes before and after creation of the sharp valleys. We develop a statistical theory for the KPZ equation in 1+1 dimension driven with a random forcing which is white in time and Gaussian correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(hhˉ,xh,t)P(h-\bar h,\partial_{x}h,t) when the forcing correlation length is much smaller than the system size and much bigger than the typical sharp valley width. In the time scales before the creation of the sharp valleys we find the exact generating function of hhˉh-\bar h and xh\partial_x h. Then we express the time scale when the sharp valleys develop, in terms of the forcing characteristics. In the stationary state, when the sharp valleys are fully developed, finite size corrections to the scaling laws of the structure functions <(hhˉ)n(xh)m><(h-\bar h)^n (\partial_x h)^m> are also obtained.Comment: 50 Pages, 5 figure
    corecore