12,569 research outputs found

    Energy Minimization in D2D-Assisted Cache-Enabled Internet of Things: A Deep Reinforcement Learning Approach

    Get PDF
    Mobile edge caching (MEC) and device-to-device (D2D) communications are two potential technologies to resolve traffic overload problems in the Internet of Things. Previous works usually investigate them separately with MEC for traffic offloading and D2D for information transmission. In this article, a joint framework consisting of MEC and cache-enabled D2D communications is proposed to minimize the energy cost of systematic traffic transmission, where file popularity and user preference are the critical criteria for small base stations (SBSs) and user devices, respectively. Under this framework, we propose a novel caching strategy, where the Markov decision process is applied to model the requesting behaviors. A novel scheme based on reinforcement learning (RL) is proposed to reveal the popularity of files as well as users' preference. In particular, a Q-learning algorithm and a deep Q-network algorithm are, respectively, applied to user devices and the SBS due to different complexities of status. To save the energy cost of systematic traffic transmission, users acquire partial traffic through D2D communications based on the cached contents and user distribution. Taking the memory limits, D2D available files, and status changing into consideration, the proposed RL algorithm enables user devices and the SBS to prefetch the optimal files while learning, which can reduce the energy cost significantly. Simulation results demonstrate the superior energy saving performance of the proposed RL-based algorithm over other existing methods under various conditions

    Energy Efficiency Optimization for Mutual-Coupling-Aware Wireless Communication System based on RIS-enhanced SWIPT

    Get PDF
    The widespread deployment of the Internet of Things (IoT) is promoting interest in simultaneous wireless information and power transfer (SWIPT), the performance of which can be further improved by employing a reconfigurable intelligent surface (RIS). In this paper, we propose a novel RIS-enhanced SWIPT system built on an electromagnetic-compliant framework. The mutual-coupling effects in the whole system are presented explicitly. Moreover, the reconfigurability of RIS is no longer expressed by the reflection-coefficient matrix but by the impedances of the tunable circuit. For comparison, both the no-coupling and the coupling-awareness cases are discussed. In particular, the energy efficiency (EE) is maximized by cooperatively optimizing the impedance parameters of the RIS elements as well as the active beamforming vectors at the base station (BS). For the coupling-awareness case, the considered problem is split into several sub-problems and solved alternatively due to its nonconvexity. Firstly, it is transformed into a more solvable form by applying the Neuman series approximation, which can be resolved iteratively. Then an alternative optimization (AO) framework and semi-definite relaxation (SDR), successive convex approximation (SCA), and Dinkelbach’s algorithm are applied to solve each sub-problem decomposed from it. Owning to the similarity between the two cases, the no-coupling one can be viewed as a reduced form of the coupling case and thus solved through a similar approach. Numerical results reveal the influence of mutual-coupling effects on the EE, especially in the RIS with closely spaced elements. In addition, physical beam designs are presented to demonstrate how the RIS assists SWIPT through various reflecting states in different conditions

    Direct evidence to support the restriction of intramolecular rotation hypothesis for the mechanism of aggregation-induced emission: Temperature resolved terahertz spectra of tetraphenylethene

    Get PDF
    In contrast to the traditional fluorescent dyes that exhibit a decrease in fluorescence upon aggregation, Aggregation-Induced Emission (AIE) molecules are a family of fluorophors which exhibit increased fluorescence upon aggregation. Consequently, AIE molecules represent an interesting new material with potential applications in fluorescent chemo/biosensors, light emitting devices and medical diagnostics. Numerous mechanisms have been proposed to explain this phenomenon, including isomerisation, and restriction of intramolecular rotations (RIR). However, there has not been any direct experimental evidence to support either one of these hypotheses. Here we use terahertz time-domain-spectroscopy (THz-TDS) and solid-state computational simulations of an AIE molecule to link the increase in intensity of intramolecular rotation and rocking modes to the measured fluorescence and reveal direct evidence supporting the RIR hypothesis. This is the first time that terahertz spectroscopy has been used to directly probe such molecular motions in AIE materials and in doing so we have found conclusive evidence to fully explain the AIE mechanism.This is the accepted version of an article first published in Materials Horizons. The version of record is available from the Royal Society of Chemistry at http://xlink.rsc.org/?DOI=c3mh00078

    Diamond Solitaire

    Full text link
    We investigate the game of peg solitaire on different board shapes, and find those of diamond or rhombus shape have interesting properties. When one peg captures many pegs consecutively, this is called a sweep. Rhombus boards of side 6 have the property that no matter which peg is missing at the start, the game can be solved to one peg using a maximal sweep of length 16. We show how to construct a solution on a rhombus board of side 6i, where the final move is a maximal sweep of length r, where r=(9i-1)(3i-1) is a "rhombic matchstick number".Comment: 11 pages, 12 figure

    Design of a pulse power supply unit for micro-ECM

    Get PDF
    Electrochemical micro-machining (μECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of μECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 μm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via μECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614
    corecore