29,027 research outputs found

    Non-Magnetic Spinguides and Spin Transport in Semiconductors

    Full text link
    We propose the idea of a "spinguide", i.e. the semiconductor channel which is surrounded with walls from the diluted magnetic semiconductor (DMS) with the giant Zeeman splitting which are transparent for electrons with the one spin polarization only. These spinguides may serve as sources of a spin-polarized current in non-magnetic conductors, ultrafast switches of a spin polarization of an electric current and, long distances transmission facilities of a spin polarization (transmission distances can exceed a spin-flip length). The selective transparence of walls leads to new size effects in transport.Comment: 4 pages, 2 figure

    The role of electron-electron interactions in two-dimensional Dirac fermions

    Full text link
    The role of electron-electron interactions on two-dimensional Dirac fermions remains enigmatic. Using a combination of nonperturbative numerical and analytical techniques that incorporate both the contact and long-range parts of the Coulomb interaction, we identify the two previously discussed regimes: a Gross-Neveu transition to a strongly correlated Mott insulator, and a semi-metallic state with a logarithmically diverging Fermi velocity accurately described by the random phase approximation. Most interestingly, experimental realizations of Dirac fermions span the crossover between these two regimes providing the physical mechanism that masks this velocity divergence. We explain several long-standing mysteries including why the observed Fermi velocity in graphene is consistently about 20 percent larger than the best values calculated using ab initio and why graphene on different substrates show different behavior.Comment: 11 pages, 4 figure

    Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in ataxin-3 (SCA3, MJD1) protein. In biochemical experiments we demonstrate that mutant SCA3exp specifically associated with the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1), an intracellular calcium (Ca2+) release channel. In electrophysiological and Ca2+ imaging experiments we show that InsP3R1 are sensitized to activation by InsP3 in the presence of mutant SCA3exp. We found that feeding SCA3-YAC-84Q transgenic mice with dantrolene, a clinically relevant stabilizer of intracellular Ca2+ signaling, improved their motor performance and prevented neuronal cells loss in pontine nuclei and substantia nigra regions. Our results indicate that deranged Ca2+ signaling may play an important role in SCA3 pathology and that Ca2+ signaling stabilizers such as dantrolene may be considered as potential therapeutic drugs for treatment of SCA3 patients

    Global polarization of QGP in non-central heavy ion collisions at high energies

    Full text link
    Due to the presence of a large orbital angular momentum of the parton system produced at the early stage of non-central heavy-ion collisions, quarks and anti-quarks are shown to be polarized in the direction opposite to the reaction plane which is determined by the impact-parameter and the beam momentum. The global quark polarization via elastic scattering was first calculated in an effective static potential model, then using QCD at finite temperature with the hard-thermal-loop re-summed gluon propagator. The measurable consequences are discussed. Global hyperon polarization from the hadronization of polarized quarks are predicted independent of the hadronization scenarios. It has also been shown that the global polarization of quarks and anti-quarks leads also to spin alignment of vector mesons. Dedicated measurements at RHIC are underway and some of the preliminary results are obtained. In this presentation, the basic idea and main results of global quark polarization are presented. The direct consequences such as global hyperon polarization and spin alignment are summarized.Comment: plenary talk at the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006), Shanghai, China, November 14-20, 200

    The Use of Gamma-ray Bursts as Direction and Time Markers in SETI Strategies

    Get PDF
    When transmitting a signal over a large distance it is more efficient to send a brief beamed signal than a continuous omni-directional transmission but this requires that the receiver knows where and when to look for the transmission. For SETI, the use of various natural phenomena has previously been suggested to achieve the desired synchronization. Here it is proposed that gamma-ray bursts may well the best ``synchronizers'' of all currently known phenomena due to their large intrinsic luminosities, high occurrence rate, isotropic sky distribution, large distance from the Galaxy, short duration, and easy detectability. For targeted searches, precise positions for gamma-ray bursts are required together with precise distance measurements to a target star. The required burst position determinations are now starting to be obtained, aided in large part by the discovery of optical afterglows. Good distance measurements are currently available from Hipparcos and even better measurements should be provided by spacecraft now being developed. For non-targeted searches, positional accuracies simply better than a detector's field of view may suffice but the time delay between the detection of a gamma-ray burst and the reception of the transmitted signal cannot be predicted in an obvious way.Comment: 8 pages, accepted for publication in PAS

    Theory of Transition Temperature of Magnetic Double Perovskites

    Full text link
    We formulate a theory of double perovskite coumpounds such as Sr2_2FeReO6_6 and Sr2_2FeMoO6_6 which have attracted recent attention for their possible uses as spin valves and sources of spin polarized electrons. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c. We find that TcT_c is determined by a subtle interplay between carrier density and the Fe-Mo/Re site energy difference, and that the non-Fe same-sublattice hopping acts to reduce TcT_c. Our results suggest that presently existing materials do not optimize TcT_c

    Boron Fullerenes: A First-Principles Study

    Get PDF
    A family of unusually stable boron cages was identified and examined using first-principles local density functional method. The structure of the fullerenes is similar to that of the B12 icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.Comment: 10 pages, 4 figures, 1 tabl

    Beat-wave generation of plasmons in semiconductor plasmas

    Full text link
    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas.Comment: 11 pages, LaTex, no figures, no macro

    Electron-electron interaction in carbon nanostructures

    Full text link
    The electron-electron interaction in carbon nanostructures was studied. A new method which allows to determine the electron-electron interaction constant λc\lambda_c from the analysis of quantum correction to the magnetic susceptibility and the magnetoresistance was developed. Three types of carbon materials: arc-produced multiwalled carbon nanotubes (arc-MWNTs), CVD-produced catalytic multiwalled carbon nanotubes (c-MWNTs) and pyrolytic carbon were used for investigation. We found that λc\lambda_c=0.2 for arc-MWNTs (before and after bromination treatment); λc\lambda_c = 0.1 for pyrolytic graphite; λc>\lambda_c > 0 for c-MWNTs. We conclude that the curvature of graphene layers in carbon nanostructures leads to the increase of the electron-electron interaction constant λc\lambda_c.Comment: 12 pages, 18 figures, to be published in the Proceedings of the NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems, NATO Science Series II, Springer, 200
    • …
    corecore