29,027 research outputs found
Non-Magnetic Spinguides and Spin Transport in Semiconductors
We propose the idea of a "spinguide", i.e. the semiconductor channel which is
surrounded with walls from the diluted magnetic semiconductor (DMS) with the
giant Zeeman splitting which are transparent for electrons with the one spin
polarization only. These spinguides may serve as sources of a spin-polarized
current in non-magnetic conductors, ultrafast switches of a spin polarization
of an electric current and, long distances transmission facilities of a spin
polarization (transmission distances can exceed a spin-flip length). The
selective transparence of walls leads to new size effects in transport.Comment: 4 pages, 2 figure
The role of electron-electron interactions in two-dimensional Dirac fermions
The role of electron-electron interactions on two-dimensional Dirac fermions
remains enigmatic. Using a combination of nonperturbative numerical and
analytical techniques that incorporate both the contact and long-range parts of
the Coulomb interaction, we identify the two previously discussed regimes: a
Gross-Neveu transition to a strongly correlated Mott insulator, and a
semi-metallic state with a logarithmically diverging Fermi velocity accurately
described by the random phase approximation. Most interestingly, experimental
realizations of Dirac fermions span the crossover between these two regimes
providing the physical mechanism that masks this velocity divergence. We
explain several long-standing mysteries including why the observed Fermi
velocity in graphene is consistently about 20 percent larger than the best
values calculated using ab initio and why graphene on different substrates show
different behavior.Comment: 11 pages, 4 figure
Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is
an autosomal-dominant neurodegenerative disorder caused by a polyglutamine
expansion in ataxin-3 (SCA3, MJD1) protein. In biochemical experiments we demonstrate
that mutant SCA3exp specifically associated with the type 1 inositol 1,4,5-trisphosphate
receptor (InsP3R1), an intracellular calcium (Ca2+) release channel. In electrophysiological
and Ca2+ imaging experiments we show that InsP3R1 are sensitized to activation by InsP3
in the presence of mutant SCA3exp. We found that feeding SCA3-YAC-84Q transgenic
mice with dantrolene, a clinically relevant stabilizer of intracellular Ca2+ signaling,
improved their motor performance and prevented neuronal cells loss in pontine nuclei
and substantia nigra regions. Our results indicate that deranged Ca2+ signaling may play
an important role in SCA3 pathology and that Ca2+ signaling stabilizers such as
dantrolene may be considered as potential therapeutic drugs for treatment of SCA3
patients
Global polarization of QGP in non-central heavy ion collisions at high energies
Due to the presence of a large orbital angular momentum of the parton system
produced at the early stage of non-central heavy-ion collisions, quarks and
anti-quarks are shown to be polarized in the direction opposite to the reaction
plane which is determined by the impact-parameter and the beam momentum. The
global quark polarization via elastic scattering was first calculated in an
effective static potential model, then using QCD at finite temperature with the
hard-thermal-loop re-summed gluon propagator. The measurable consequences are
discussed. Global hyperon polarization from the hadronization of polarized
quarks are predicted independent of the hadronization scenarios. It has also
been shown that the global polarization of quarks and anti-quarks leads also to
spin alignment of vector mesons. Dedicated measurements at RHIC are underway
and some of the preliminary results are obtained. In this presentation, the
basic idea and main results of global quark polarization are presented. The
direct consequences such as global hyperon polarization and spin alignment are
summarized.Comment: plenary talk at the 19th International Conference on
Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006), Shanghai, China,
November 14-20, 200
The Use of Gamma-ray Bursts as Direction and Time Markers in SETI Strategies
When transmitting a signal over a large distance it is more efficient to send
a brief beamed signal than a continuous omni-directional transmission but this
requires that the receiver knows where and when to look for the transmission.
For SETI, the use of various natural phenomena has previously been suggested to
achieve the desired synchronization. Here it is proposed that gamma-ray bursts
may well the best ``synchronizers'' of all currently known phenomena due to
their large intrinsic luminosities, high occurrence rate, isotropic sky
distribution, large distance from the Galaxy, short duration, and easy
detectability. For targeted searches, precise positions for gamma-ray bursts
are required together with precise distance measurements to a target star. The
required burst position determinations are now starting to be obtained, aided
in large part by the discovery of optical afterglows. Good distance
measurements are currently available from Hipparcos and even better
measurements should be provided by spacecraft now being developed. For
non-targeted searches, positional accuracies simply better than a detector's
field of view may suffice but the time delay between the detection of a
gamma-ray burst and the reception of the transmitted signal cannot be predicted
in an obvious way.Comment: 8 pages, accepted for publication in PAS
Theory of Transition Temperature of Magnetic Double Perovskites
We formulate a theory of double perovskite coumpounds such as SrFeReO
and SrFeMoO which have attracted recent attention for their possible
uses as spin valves and sources of spin polarized electrons. We solve the
theory in the dynamical mean field approximation to find the magnetic
transition temperature . We find that is determined by a subtle
interplay between carrier density and the Fe-Mo/Re site energy difference, and
that the non-Fe same-sublattice hopping acts to reduce . Our results
suggest that presently existing materials do not optimize
Boron Fullerenes: A First-Principles Study
A family of unusually stable boron cages was identified and examined using
first-principles local density functional method. The structure of the
fullerenes is similar to that of the B12 icosahedron and consists of six
crossing double-rings. The energetically most stable fullerene is made up of
180 boron atoms. A connection between the fullerene family and its precursors,
boron sheets, is made. We show that the most stable boron sheets are not
necessarily precursors of very stable boron cages. Our finding is a step
forward in the understanding of the structure of the recently produced boron
nanotubes.Comment: 10 pages, 4 figures, 1 tabl
Beat-wave generation of plasmons in semiconductor plasmas
It is shown that in semiconductor plasmas, it is possible to generate large
amplitude plasma waves by the beating of two laser beams with frequency
difference close to the plasma frequency. For narrow gap semiconductors (for
example n-type InSb), the system can simulate the physics underlying beat wave
generation in relativistic gaseous plasmas.Comment: 11 pages, LaTex, no figures, no macro
Electron-electron interaction in carbon nanostructures
The electron-electron interaction in carbon nanostructures was studied. A new
method which allows to determine the electron-electron interaction constant
from the analysis of quantum correction to the magnetic
susceptibility and the magnetoresistance was developed. Three types of carbon
materials: arc-produced multiwalled carbon nanotubes (arc-MWNTs), CVD-produced
catalytic multiwalled carbon nanotubes (c-MWNTs) and pyrolytic carbon were used
for investigation. We found that =0.2 for arc-MWNTs (before and
after bromination treatment); = 0.1 for pyrolytic graphite;
0 for c-MWNTs. We conclude that the curvature of graphene layers
in carbon nanostructures leads to the increase of the electron-electron
interaction constant .Comment: 12 pages, 18 figures, to be published in the Proceedings of the NATO
Advanced Research Workshop on Electron Correlation in New Materials and
Nanosystems, NATO Science Series II, Springer, 200
Recommended from our members
Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment
- …