52,383 research outputs found

    Shock and vibration response of multistage structure

    Get PDF
    Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity

    Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction

    Get PDF
    Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi

    After heat distribution of a mobile nuclear power plant

    Get PDF
    A computer program was developed to analyze the transient afterheat temperature and pressure response of a mobile gas-cooled reactor power plant following impact. The program considers (in addition to the standard modes of heat transfer) fission product decay and transport, metal-water reactions, core and shield melting and displacement, and pressure and containment vessel stress response. Analyses were performed for eight cases (both deformed and undeformed models) to verify operability of the program options. The results indicated that for a 350 psi (241 n/sq cm) initial internal pressure, the containment vessel can survive over 100,000 seconds following impact before creep rupture occurs. Recommendations were developed as to directions for redesign to extend containment vessel life

    SATMC: Spectral Energy Distribution Analysis Through Markov Chains

    Full text link
    We present the general purpose spectral energy distribution (SED) fitting tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models of the user's choice to infer intrinsic parameters, generate confidence levels and produce the posterior parameter distribution. Here we describe the key features of SATMC from the underlying MCMC engine to specific features for handling SED fitting. We detail several test cases of SATMC, comparing results obtained to traditional least-squares methods, which highlight its accuracy, robustness and wide range of possible applications. We also present a sample of submillimetre galaxies that have been fitted using the SED synthesis routine GRASIL as input. In general, these SMGs are shown to occupy a large volume of parameter space, particularly in regards to their star formation rates which range from ~30-3000 M_sun yr^-1 and stellar masses which range from ~10^10-10^12 M_sun. Taking advantage of the Bayesian formalism inherent to SATMC, we also show how the fitting results may change under different parametrizations (i.e., different initial mass functions) and through additional or improved photometry, the latter being crucial to the study of high-redshift galaxies.Comment: 17 pages, 11 figures, MNRAS accepte

    Bridging Atomistic/Continuum Scales in Solids with Moving Dislocations

    Get PDF
    We propose a multiscale method for simulating solids with moving dislocations. Away from atomistic subdomains where the atomistic dynamics are fully resolved, a dislocation is represented by a localized jump profile, superposed on a defect-free field. We assign a thin relay zone around an atomistic subdomain to detect the dislocation profile and its propagation speed at a selected relay time. The detection technique utilizes a lattice time history integral treatment. After the relay, an atomistic computation is performed only for the defect-free field. The method allows one to effectively absorb the fine scale fluctuations and the dynamic dislocations at the interface between the atomistic and continuum domains. In the surrounding region, a coarse grid computation is adequate

    DC Spin Current Generation in a Rashba-type Quantum Channel

    Full text link
    We propose and demonstrate theoretically that resonant inelastic scattering (RIS) can play an important role in dc spin current generation. The RIS makes it possible to generate dc spin current via a simple gate configuration: a single finger-gate that locates atop and orients transversely to a quantum channel in the presence of Rashba spin-orbit interaction. The ac biased finger-gate gives rise to a time-variation in the Rashba coupling parameter, which causes spin-resolved RIS, and subsequently contributes to the dc spin current. The spin current depends on both the static and the dynamic parts in the Rashba coupling parameter, α0\alpha_0 and α1\alpha_1, respectively, and is proportional to α0α12\alpha_0 \alpha_1^2. The proposed gate configuration has the added advantage that no dc charge current is generated. Our study also shows that the spin current generation can be enhanced significantly in a double finger-gate configuration.Comment: 4 pages,4 figure

    Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation

    Get PDF
    In this work the mechanisms leading to the enhancement of optical nonlinearity of nematic liquid crystalline material through localized heating by doping the liquid crystals (LCs) with gold nanoparticles (GNPs) are investigated. We present some experimental and theoretical results on the effect of voltage and nanoparticle concentration on the nonlinear response of GNP-LC suspensions. The optical nonlinearity of these systems is characterized by diffraction measurements and the second order nonlinear refractive index, n 2 , is used to compare systems with different configurations and operating conditions. A theoretical model based on heat diffusion that takes into account the intensity and finite size of the incident beam, the nanoparticle concentration dependent absorbance of GNP doped LC systems and the presence of bounding substrates is developed and validated. We use the model to discuss the possibilities of further enhancing the optical nonlinearity
    • …
    corecore