23 research outputs found
Transmembrane TM3b of Mechanosensitive Channel MscS Interacts With Cytoplasmic Domain Cyto-Helix
The mechanosensitive channel MscS functions as an osmolyte emergency release-valve in the event of a sudden decrease in external environmental osmolarity. MscS has served as a paradigm for studying how channel proteins detect and respond to mechanical stimuli. However, the inter-domain interactions and structural rearrangements that occur in the MscS gating process remain largely unknown. Here, we determined the interactions between the transmembrane domain and cytoplasmic domain of MscS. Using in vivo cellular viability, single-channel electrophysiological recording, and cysteine disulfide trapping, we demonstrated that N117 of the TM3b helix and N167 of the Cyto-helix are critical residues that function at the TM3b-Cyto helix interface. In vivo downshock assays showed that double cysteine substitution at N117 and N167 failed to rescue the osmotic-lysis phenotype of cells in acute osmotic downshock. Single-channel recordings demonstrated that cysteine cross-linking of N117C and N167C led to a non-conductive channel. Consistently, coordination of the histidines of N117H and N167H caused a decrease in channel gating. Moreover, cross-linked N117 and N167 altered the gating of the severe gain-of-function mutant L109S. Our results demonstrate that N117–N167 interactions stabilize the inactivation state by an association of TM3b segments with β-domains of the cytoplasmic region, providing further insights into the gating mechanism of the MscS channel
A factor score clustering approach to analyze the biopharmaceutical sector in the Chinese market during COVID-19
Abstract The biopharmaceutical sector is of considerable interest during the COVID-19 pandemic. This study aims to investigate the biopharmaceutical sector using the Shenwan Industry Classification and provides insights into investment strategies. We combine factor and cluster analyses to reduce data dimensions and detect their latent similarities. Specifically, the biopharmaceutical sector is divided into six categories based on second-level industry classification. It is observed that medical devices, medical services, biological products, and chemical pharmaceuticals maintained their upward tendency, while Chinese medicine and pharmaceutical commerce declined slightly. We also develop optimal investment strategies using various metrics for different investor types
Synthetic test circuit with two‐level voltage source for HVDC circuit breakers
Abstract In order to ensure the reliable interruption of high voltage direct current circuit breaker (HVDC CB), the breaking test of HVDC CB plays an important role in its performance verification. In this paper, the interruption process of the HVDC CB is analyzed, and the equivalent requirements for the breaking test of HVDC CB are summarized. In the breaking test of high voltage and high current, the transient interruption voltage (TIV) duration is short, which leads to insufficient voltage stress. A new synthetic test circuit for testing the interruption performance of HVDC CBs is proposed, which can solve the problem of insufficient TIV duration caused by insufficient test capacity. Subsequently, the working principle of the test circuit is introduced in detail and the design method of the circuit parameters is given. The short‐circuit current breaking test simulation of HVDC CB is carried out. The simulation results fit most well with the results of actual test cases, which verifies the universality of this test method. Finally, a test platform is built to verify the principle of the test circuit. TIV rose to 2.5 kV compared to the predetermined system voltage of 1.67 kV during the test, which means that the key stress provided by the test circuit can meet the expected requirements
Aircraft Rotation Detection in Remote Sensing Image Based on Multi-Feature Fusion and Rotation-Aware Anchor
Due to the variations of aircraft types, sizes, orientations, and complexity of remote sensing images, it is still difficult to effectively obtain accurate position and type by aircraft detection, which plays an important role in intelligent air transportation and digital battlefield. Current aircraft detection methods often use horizontal detectors, which produce significant redundancy, nesting, and overlap of detection areas and negatively affect the detection performance. To address these difficulties, a framework based on RetinaNet that combines a multi-feature fusion module and a rotating anchors generation mechanism is proposed. Firstly, the multi-feature fusion module mainly realizes feature fusion in two ways. One is to extract multi-scale features by the feature pyramid, and the other is to obtain corner features for each layer of feature map, thereby enriching the feature expression of aircraft. Then, we add a rotating anchor generation mechanism in the middle of the framework to realize the arbitrary orientation detection of aircraft. In the last, the framework connects two sub-networks, one for classifying anchor boxes and the other for regressing anchor boxes to ground-truth aircraft boxes. Compared with state-of-the-art methods by conducting comprehensive experiments on a publicly available dataset to validate the proposed method performance of aircraft detection. The detection precision (P) of proposed method achieves 97.06% on the public dataset, which demonstrates the effectiveness of the proposed method
Controllable Fabrication of Heterogeneous p-TiO<sub>2</sub> QDs@g-C<sub>3</sub>N<sub>4</sub> p-n Junction for Efficient Photocatalysis
Photocatalytic technology has been considered to be an ideal approach to solve the energy and environmental crises, and TiO2 is regarded as the most promising photocatalyst. Compared with bare TiO2, TiO2 based p-n heterojunction exhibits a much better performance in charge separation, light absorption and photocatalytic activity. Herein, we developed an efficient method to prepare p-type TiO2 quantum dots (QDs) and decorated graphitic carbonitrile (g-C3N4) nanocomposites, while the composition and structure of the TiO2@g-C3N4 were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy ,thermogravimetric analysis, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-visible diffuse reflectance spectroscopy characterizations. The characterization results reveal the surface decorated TiO2 quantum dots is decomposed by titanium glycerolate, which exhibits p-type conductivity. The presence of p-n heterojunction over interface is confirmed, and photoluminescence results indicate a better performance in transfer and separation of photo-generated charge carriers than pure semiconductors and type-II heterojunction. Moreover, the synergy of p-n heterojunction over interface, strong interface interaction, and quantum-size effect significantly contributes to the promoted performance of TiO2 QDs@g-C3N4 composites. As a result, the as-fabricated TiO2 QDs@g-C3N4 composite with a p/n mass ratio of 0.15 exhibits improved photo-reactivity of 4.3-fold and 5.4-fold compared to pure g-C3N4 in degradation of organic pollutant under full solar spectrum and visible light irradiation, respectively
Inhibition of TRPC6 Signal Pathway Alleviates Podocyte Injury Induced by TGF-β1
Background/Aims: Transforming growth factor beta 1 (TGF-β1) plays a critical role in the pathogenesis of glomerulosclerosis. The purpose of this study was to examine the effects of inhibition of transient receptor potential cation channel C6 (TRPC6) on podocyte injury induced by TGF-β1 via nephrin and desmin mechanisms. Methods: A rat model of nephropathy was first induced by intravenous injections of adriamycin to determine TRPC6 signal pathway engaged in glomerulosclerosis in vivo. Conditionally immortalized podocytes were cultured in vitro and they were divided into four groups: control; TGF-β1 treatment; TGF-β1 with TRPC6 knockdown and TGF-β1 without TRPC6 knockdown. Real time RT-PCR and Western blot analysis were employed to determine the mRNA and protein of expression of nephrin, desmin and caspase-9, respectively. Flow cytometry was used to examine the apoptotic rate of podocytes and DAPI fluorescent staining was used to determine apoptotic morphology. Results: In vivo experiment, adriamycin significantly upregulated the protein expression of TGF-β1, TRPC6, desmin and caspase-9, and decreased nephrin. Consistent with the latter results, in vitro experiment mRNA and protein expression of desmin and caspase-9 was increased in cultured TGF-β1-treated podocytes, whereas nephrin was declined as compared with the control group. Importantly, TRPC6 knockdown significantly attenuated the upregulated desmin and caspase-9, and alleviated impairment of nephrin induced by TGF-β1. Moreover, typical morphologic features were presented in apoptotic podocytes. The number of apoptotic podocytes was increased after exposure to TGF-β1 and this was alleviated after TRPC6 knockdown. TRPC6 knockdown also decreased an apoptosis rate of TGF-β1-treated podocytes. Note that negative TRPC6 transfection control failed to alter an increase of the apoptosis rate in TGF-β1-treated podocytes. Conclusions: TGF-β1 induced by glomerulosclerosis impairs the protein expression of nephrin and amplifies the protein expression of desmin and caspase -9 via TRPC6 signal pathway. Inhibition of TRPC6 alleviates these changes in podocytes-treated with TGF-β1 and attenuated apoptosis of podocytes. Our data suggest that TRPC6 signal plays an important role in mediating TGF-β1-induced podocyte injury via nephrin, desmin and caspase-9. Results of the current study also indicate that blocking TRPC6 signal pathway has a protective effect on podocyte injury. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of podocyte injury observed in glomerulosclerosis