91 research outputs found

    Suitable grazing during the regrowth period promotes plant diversity in winter pastures in the Qinghai-Tibetan plateau

    Get PDF
    DATA AVAILABILITY STATEMENT : The original contributions presented in this study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.Vegetation is a crucial component of any ecosystem and to preserve the health and stability of grassland ecosystems, species diversity is important. The primary form of grassland use globally is livestock grazing, hence many studies focus on how plant diversity is affected by the grazing intensity, differential use of grazing time and livestock species. Nevertheless, the impact of the grazing time on plant diversity remains largely unexplored. We performed a field survey on the winter pastures in alpine meadows of the Qinghai- Tibetan Plateau (QTP) to examine the effects of grazing time on the vegetation traits. Livestock species, grazing stocking rates and the initiation time of the grazing were similar, but termination times of the grazing differed. The grazing termination time has a significant effect on most of the vegetation traits in the winter pastures. The vegetation height, above-ground biomass, and the Graminoids biomass was negatively related to the grazing termination time in the winter pastures. In contrast, vegetation cover and plant diversity initially increased and subsequently decreased again as the grazing termination time was extended. An extension of the grazing time did not have any effect on the biomass of forbs. Our study is the first to investigate the effects of grazing during the regrowth period on vegetation traits and imply that the plant diversity is mediated by the grazing termination time during the regrowth period in winter pastures. These findings could be used to improve the guidelines for livestock grazing management and policies of summer and winter pasture grazing of family pastures on the QTP from the perspective of plant diversity protection.The Fundamental Research Funds of China West Normal University, the Gansu Provincial Science and Technology Program and the Natural Science Foundation of Sichuan.http://frontiersin.org/Ecology_and_Evolutionam2023Mammal Research InstituteZoology and Entomolog

    Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing

    Get PDF
    Background/AimsHepatocellular carcinoma (HCC), accounting for 75-85% of primary liver cancer cases, is the third leading cause of cancer-related death worldwide. The purpose of this research was to examine the tumor immune microenvironment (TIME) in HCC.MethodsWe investigated the HCC TIME by integrated analysis of single-cell and bulk-tissue sequencing data to reveal the landscape of major immune cell types.ResultsRegulatory T(Treg) cells were found to be specifically distributed in the TIME of HCC. Several immune checkpoints, including TNFRSF4, TIGIT and CTLA4, were found to be uniquely overexpressed in Treg cells, and the glycolysis/gluconeogenesis pathway was enriched in Treg cells. We also discovered the presence of two NK-cell subsets with different cytotoxic capacities, one in an activated state with antitumor effects and another with an exhausted status. In addition, memory B cells in HCC were found to exist in a unique state, with high proliferation, low differentiation, and low activity, which was induced by overexpression of PRAP1 and activation of the MIF-CD74 axis.ConclusionsWe revealed the TIME landscape in HCC, highlighting the heterogeneity of major immune cell types and their potential mechanisms in the formation of an immunosuppressive environment. Hence, blocking the formation of the TIME could be a useful therapeutic strategy for HCC

    The Main Progress of Perovskite Solar Cells in 2020–2021

    Get PDF
    Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided

    Risk assessment in the plateau pika (Ochotona curzoniae): intensity of behavioral response differs with predator species

    Get PDF
    Abstract Background The ability of a prey species to assess the risk that a predator poses can have important fitness advantages for the prey species. To better understand predator–prey interactions, more species need to be observed to determine how prey behavioral responses differ in intensity when approached by different types of predators. The plateau pika (Ochotona curzoniae) is preyed upon by all predators occurring in its distribution area. Therefore, it is an ideal species to study anti-predator behavior. In this study, we investigated the intensity of anti-predator behavior of pikas in response to visual cues by using four predator species models in Maqu County on the eastern Qinghai-Tibetan Plateau. Results The behavioral response metrics, such as Flight Initiation Distance (FID), the hiding time and the percentage of vigilance were significantly different when exposed to a Tibetan fox, a wolf, a Saker falcon and a large-billed crow, respectively. Pikas showed a stronger response to Saker falcons compared to any of the other predators. Conclusions Our results showed that pikas alter their behavioral (such as FID, the hiding time and the vigilance) response intensity to optimally balance the benefits when exposed to different taxidermy predator species models. We conclude that pikas are able to assess their actual risk of predation and show a threat-sensitive behavioral response

    Mechanism analysis of grain growth dominated by alloy composition gradients during powder bed fusion

    No full text
    A multi-physics simulation model has been established to investigate the influence of Laser powder bed fusion parameters on the spatial composition distribution and grain growth mechanism of the single-track printed dissimilar alloys. Our study shows that alloy composition gradient isosurfaces can be used to visualize the spatial distribution of alloy composition for miscible dissimilar alloys. When the melt pool aspect ratio changes from large to small, the grain growth transitions from the temperature gradient mode to composition gradient mode and then to the mixed mode. Our experimental observations show that in extreme cases, the curved grain angle can reach 272°

    High-Performance n-Type Bi<sub>2</sub>Te<sub>3</sub> Thermoelectric Fibers with Oriented Crystal Nanosheets

    No full text
    High-performance thermoelectric fibers with n-type bismuth telluride (Bi2Te3) core were prepared by thermal drawing. The nanosheet microstructures of the Bi2Te3 core were tailored by the whole annealing and Bridgman annealing processes, respectively. The influence of the annealing processes on the microstructure and thermoelectric performance was investigated. As a result of the enhanced crystalline orientation of Bi2Te3 core caused by the above two kinds of annealing processes, both the electrical conductivity and thermal conductivity could be improved. Hence, the thermoelectric performance was enhanced, that is, the optimized dimensionless figure of merit (ZT) after the Bridgman annealing processes increased from 0.48 to about 1 at room temperature

    Multi-Scale Topology Optimization of Femoral Stem Structure Subject to Stress Shielding Reduce

    No full text
    Hip replacement femoral implants are made of substantial materials that all have stiffness considerably higher than that of bone, which can cause significant bone resorption secondary to stress shielding and lead to severe complications. The topology optimization design method based on the uniform distribution of material micro-structure density can form a continuous mechanical transmission route, which can better solve the problem of reducing the stress shielding effect. A multi-scale parallel topology optimization method is proposed in this paper and a topological structure of type B femoral stem is derived. Using the traditional topology optimization method (Solid Isotropic Material with Penalization, SIMP), a topological structure of type A femoral stem is also derived. The sensitivity of the two kinds of femoral stems to the change of load direction is compared with the variation amplitude of the structural flexibility of the femoral stem. Furthermore, the finite element method is used to analyze the stress of type A and type B femoral stem under multiple conditions. Simulation and experimental results show that the average stress of type A and type B femoral stem on the femur are 14.80 MPa, 23.55 MPa, 16.94 MPa and 10.89 MPa, 20.92 MPa, 16.50 MPa, respectively. For type B femoral stem, the average error of strain is −1682με and the average relative error is 20.3% at the test points on the medial side and the mean error of strain is 1281με and the mean relative error is 19.5% at the test points on the outside

    Semi-Reliability Probability Damage Assessment of GFRP Bars Embedded in Steam-Curing Concrete Beams Based on the Multiple Factors Related Moisture Absorption Model

    No full text
    GFRP bars will be damaged due to a series of irreversible hygroscopic chemical reactions under humid and hot curing environmental conditions. The multiple factors related to the moisture absorption model were established through the moisture absorption test of GFRP bars embedded in steam-curing concrete, which considered different curing temperatures, different thicknesses of the protective layer, and different diameters of GFRP bars. Semi-reliability probability damage assessment of GFRP bars embedded in steam-curing concrete was described by introducing the reliability and stochastic theory. Subsequently, the tensile test of GFRP bars was carried out to verify the feasibility of the damage assessment. The results showed that the moisture absorption curves of GFRP bars were basically in line with Fick’s law. In addition, the influences of the curing temperature, the thickness of the protective layer, and the diameter on moisture absorption performance were presented. The semi-reliability probability damage assessment model of GFRP bars embedded in steam-curing concrete beams adequately considered the multiple factors related to moisture absorption and the uncertainty and randomness of the influencing factors during the process of moisture absorption

    A fine-grained Chinese word segmentation and part-of-speech tagging corpus for clinical text

    No full text
    Abstract Background Chinese word segmentation (CWS) and part-of-speech (POS) tagging are two fundamental tasks of Chinese text processing. They are usually preliminary steps for lots of Chinese natural language processing (NLP) tasks. There have been a large number of studies on CWS and POS tagging in various domains, however, few studies have been proposed for CWS and POS tagging in the clinical domain as it is not easy to determine granularity of words. Methods In this paper, we investigated CWS and POS tagging for Chinese clinical text at a fine-granularity level, and manually annotated a corpus. On the corpus, we compared two state-of-the-art methods, i.e., conditional random fields (CRF) and bidirectional long short-term memory (BiLSTM) with a CRF layer. In order to validate the plausibility of the fine-grained annotation, we further investigated the effect of CWS and POS tagging on Chinese clinical named entity recognition (NER) on another independent corpus. Results When only CWS was considered, CRF achieved higher precision, recall and F-measure than BiLSTM-CRF. When both CWS and POS tagging were considered, CRF also gained an advantage over BiLSTM. CRF outperformed BiLSTM-CRF by 0.14% in F-measure on CWS and by 0.34% in F-measure on POS tagging. The CWS information brought a greatest improvement of 0.34% in F-measure, while the CWS&POS information brought a greatest improvement of 0.74% in F-measure. Conclusions Our proposed fine-grained CWS and POS tagging corpus is reliable and meaningful as the output of the CWS and POS tagging systems developed on this corpus improved the performance of a Chinese clinical NER system on another independent corpus
    • …
    corecore