5 research outputs found
Human motion retrieval based on freehand sketch
In this paper, we present an integrated framework of human motion retrieval based on freehand sketch. With some simple rules, the user can acquire a desired motion by sketching several key postures. To retrieve efficiently and accurately by sketch, the 3D postures are projected onto several 2D planes. The limb direction feature is proposed to represent the input sketch and the projected-postures. Furthermore, a novel index structure based on k-d tree is constructed to index the motions in the database, which speeds up the retrieval process. With our posture-by-posture retrieval algorithm, a continuous motion can be got directly or generated by using a pre-computed graph structure. What's more, our system provides an intuitive user interface. The experimental results demonstrate the effectiveness of our method. © 2014 John Wiley & Sons, Ltd
Sketch-based Human Motion Retrieval via 2D Geometric Posture Descriptor.
AbstractSketch-based human motion retrieval is a hot topic in computer animation in recent years. In this paper, we present a novel sketch-based human motion retrieval method via selected 2-dimensional (2D) Geometric Posture Descriptor (2GPD). Specially, we firstly propose a rich 2D pose feature call 2D Geometric Posture Descriptor (2GPD), which is effective in encoding the 2D posture similarity by exploiting the geometric relationships among different human body parts. Since the original 2GPD is of high dimension and redundant, a semi-supervised feature selection algorithm derived from Laplacian Score is then adopted to select the most discriminative feature component of 2GPD as feature representation, and we call it as selected 2GPD. Finally, a posture-by-posture motion retrieval algorithm is used to retrieve a motion sequence by sketching several key postures. Experimental results on CMU human motion database demonstrate the effectiveness of our proposed approach
An Environmentally Sensitive Silk Fibroin/Chitosan Hydrogel and Its Drug Release Behaviors
To fabricate environmentally sensitive hydrogels with better biocompatibility, natural materials such as protein and polysaccharide have been widely used. Environmentally sensitive hydrogels can be used as a drug carrier for sustained drug release due to its stimulus responsive performance. The relationship between the internal structure of hydrogels and their drug delivery behaviors remains indeterminate. In this study, environmentally sensitive hydrogels fabricated by blending silk fibroin/chitosan with different mass ratios were successfully prepared using 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC)/N-Hydroxysuccinimide (NHS) cross-linking agent. Scanning-electron microscopy (SEM) images showed the microcosmic surface of the gel had a 3-D network-like and interconnected pore structure. The N2 adsorption–desorption method disclosed the existence of macroporous and mesoporous structures in the internal structure of hydrogels. Data of compression tests showed its good mechanical performance. The swelling performance of hydrogels exhibited stimuli responsiveness at different pH and ion concentration. With the increase of pH and ion concentration, the swelling ratios of hydrogels (silk fibroin (SF)/ chitosan (CS) = 8/2 and 7/3) decreased. Methylene blue (MB) was loaded into the hydrogels to confirm the potential of sustained drug release and pH-responsive behavior. Therefore, due to the porous structure, stable mechanical strength, stimuli responsive swelling performance, and drug release behaviors, the SF/CS composite hydrogels have potential applications in controlled drug release