184 research outputs found

    The Positive Role of Multiplicative Noise in Complete Synchronization of Unidirectionally Coupled Ring with Three Nodes

    Get PDF
    The role of multiplicative noise in the synchronization of unidirectionally coupled ring with three nodes is studied. Based on the theory of stochastic differential equations, we demonstrate that noise plays a positive role in complete synchronization. In numerical simulations, the Lorenz system, Rössler like system, and Hindmarsh-Rose neuron model are employed to demonstrate the correctness of our theoretical result

    The Positive Role of Multiplicative Noise in Complete Synchronization of Unidirectionally Coupled Ring with Three Nodes

    Get PDF
    The role of multiplicative noise in the synchronization of unidirectionally coupled ring with three nodes is studied. Based on the theory of stochastic differential equations, we demonstrate that noise plays a positive role in complete synchronization. In numerical simulations, the Lorenz system, Rössler like system, and Hindmarsh-Rose neuron model are employed to demonstrate the correctness of our theoretical result

    Bose-Einstein condensation on an atom chip

    Full text link
    We report an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip based Z-wire current and a homogeneous bias magnetic field create a tight magnetic trap, which allows for a fast production of BEC. After an 4.17s forced radio frequency evaporative cooling, a condensate with about 3000 atoms appears. And the transition temperature is about 300nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.Comment: 5 pages, 6 figure

    Numerical Extraction of the Equivalent Circuit for a Basic Magnetoelectric Dipole Antenna

    Get PDF
    Magnetoelectric dipoles have attracted global research attention due to its broadband, unidirectional, and high front-to-back ratio characteristics. This study implemented a co-simulation between a basic magnetoelectric dipole and its front feeding circuit through the step-by-step numerical extraction of its equivalent circuit model equipped with lumped and frequency-independent components. First, the series resonance subcircuit was derived from the series resonance point in the impedance of the magnetoelectric dipole. Second, the parallel resonance sub-circuit was achieved based on the parallel resonance point. By combining the series and parallel sub-circuits according to the sequence of their resonance frequency, the final form of the equivalent circuit for the basic magnetoelectric dipole was realized. Furthermore, to obtain the component values of the proposed circuit, a numerical fitting technique was adopted to accurately match the input impedance of the antenna and its equivalent circuit. A comparison of the circuit and antenna electromagnetic simulations showed that they agreed well with each other. Hence, the correctness and feasibility of the extraction process were verified. The overall results showed that the proposed circuit model can easily substitute for a basic magnetoelectric dipole in the implementation of antenna/circuit co-simulation in circuit simulators

    Frequency-dependent alterations in functional connectivity in patients with Alzheimer’s Disease spectrum disorders

    Get PDF
    BackgroundIn the spectrum of Alzheimer’s Disease (AD) and related disorders, the resting-state functional magnetic resonance imaging (rs-fMRI) signals within the cerebral cortex may exhibit distinct characteristics across various frequency ranges. Nevertheless, this hypothesis has not yet been substantiated within the broader context of whole-brain functional connectivity. This study aims to explore potential modifications in degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) among individuals with amnestic mild cognitive impairment (aMCI) and AD, while assessing whether these alterations differ across distinct frequency bands.MethodsThis investigation encompassed a total of 53 AD patients, 40 aMCI patients, and 40 healthy controls (HCs). DC and VMHC values were computed within three distinct frequency bands: classical (0.01–0.08 Hz), slow-4 (0.027–0.073 Hz), and slow-5 (0.01–0.027 Hz) for the three respective groups. To discern differences among these groups, ANOVA and subsequent post hoc two-sample t-tests were employed. Cognitive function assessment utilized the mini-mental state examination (MMSE) and Montreal Cognitive Assessment (MoCA). Pearson correlation analysis was applied to investigate the associations between MMSE and MoCA scores with DC and VMHC.ResultsSignificant variations in degree centrality (DC) were observed among different groups across diverse frequency bands. The most notable differences were identified in the bilateral caudate nucleus (CN), bilateral medial superior frontal gyrus (mSFG), bilateral Lobule VIII of the cerebellar hemisphere (Lobule VIII), left precuneus (PCu), right Lobule VI of the cerebellar hemisphere (Lobule VI), and right Lobule IV and V of the cerebellar hemisphere (Lobule IV, V). Likewise, disparities in voxel-mirrored homotopic connectivity (VMHC) among groups were predominantly localized to the posterior cingulate gyrus (PCG) and Crus II of the cerebellar hemisphere (Crus II). Across the three frequency bands, the brain regions exhibiting significant differences in various parameters were most abundant in the slow-5 frequency band.ConclusionThis study enhances our understanding of the pathological and physiological mechanisms associated with AD continuum. Moreover, it underscores the importance of researchers considering various frequency bands in their investigations of brain function

    Skin sympathetic nerve activity in patients with obstructive sleep apnea

    Get PDF
    Background: Obstructive sleep apnea (OSA) is associated with increased cardiac arrhythmia and sudden cardiac death. We recently developed a new method (neuECG) to noninvasively measure electrocardiogram and skin sympathetic nerve activity (SKNA). Objective: The purpose of this study was to test the hypothesis that SKNA measured during sleep study is higher in patients with OSA than in those without OSA. Methods: We prospectively recorded neuECG and polysomnography in 26 patients undergoing a sleep study. Sleep stages were scored into rapid eye movement (REM), and non-REM sleep stages 1 (N1), 2 (N2), and 3 (N3). Average voltage of skin sympathetic nerve activity (aSKNA) and SKNA burst area were calculated for quantification. Apnea/hypopnea index (AHI) >5 per hour was used to diagnose OSA. Results: There was a positive correlation (r = 0.549; P = .018) between SKNA burst area and the arousal index in OSA but not in the control group. aSKNA during sleep was 0.61 ± 0.09 μV in OSA patients (n = 18) and 0.53 ± 0.04 μV in control patients (n = 8; P = .025). Burst area was 3.26 (1.90-4.47) μV·s/min in OSA patients and 1.31 (0.67-1.94) μV·s/min in control (P = .047). More apparent differences were found during N2, when the burst area in OSA (3.06 [1.46-5.52] μV·s/min) was much higher than that of the control (0.89 [0.79-1.65] μV·s/min; P = .03). Conclusion: OSA patients have higher SKNA activity than control patients, with the most pronounced differences observed during N2. Arousal at the end of apnea episodes is associated with large SKNA bursts. Overlaps of aSKNA and SKNA burst area between groups suggest that not all OSA patients have increased sympathetic tone

    First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way

    Get PDF
    We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 \ub1 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 7 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50\ub0), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass
    • …
    corecore