135 research outputs found

    Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated plasma free fatty acid (FFA) levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36) is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36.</p> <p>Results</p> <p>We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs) treated with oleic acid (OA). We found that OA induces lipid accumulation in SMCs in a dose dependent manner. Rat aortic SMCs treated for 48 hours with OA (250 μmol/L) became foam cells based on morphological (Oil Red O staining) and biochemical (5 times increase in cellular triglyceride) criteria. Moreover, specific inhibition of CD36 by sulfo-N-succinimidyl oleate significantly attenuated OA induced lipid accumulation and foam cell formation. To confirm these results <it>in vivo</it>, we used ApoE-deficient mice fed with normal chow (NC), OA diet, NC plus lipolysis inhibitor acipimox or OA plus acipimox. OA-fed mice showed increased plasma FFA levels and enhanced atherosclerotic lesions in the aortic sinus compared to the NC group (both <it>p </it>< 0.01). This effect was partially reversed by acipimox (lesion area: OA: 3.09 ± 0.10 ×10<sup>5 </sup>μm<sup>2 </sup>vs. OA plus acipimox: 2.60 ± 0.10 ×10<sup>5 </sup>μm<sup>2</sup>, <it>p </it>< 0.05; FFA: OA: 0.91 ± 0.03 mmol/L vs. OA plus acipimox: 0.78 ± 0.03 mmol/L, <it>p </it>< 0.05).</p> <p>Conclusions</p> <p>These findings suggest that OA induces smooth muscle foam cell formation and enhances atherosclerotic lesions in part though CD36. Furthermore, these findings provide a novel model for the investigation of atherosclerosis.</p

    PKM2 Interacts With the Cdk1-CyclinB Complex to Facilitate Cell Cycle Progression in Gliomas

    Get PDF
    PKM2 is a phosphotyrosine-binding glycolytic enzyme upregulated in many cancers, including glioma, and contributes to tumor growth by regulating cell cycle progression. We noted, however, that in multiple glioma cell lines, PKM2 knock-down resulted in an accumulation of cells in G2-M phase. Moreover, PKM2 knock-down decreased Cdk1 activity while introducing a constitutively active Cdk1 reversed the effects of PKM2 knock-down on cell cycle progression. The means by which PKM2 increases Cdk1 activity have not been described. Transient interaction of T14/Y15-phosphorylated Cdk1 with cyclin B allows Cdk7-mediated pT161 Cdk1 phosphorylation followed by cdc25C-mediated removal of pT14/Y15 and activation of Cdk1 in cycling cells. In the present course of investigation, PKM2 modulation did not influence Cdk7 activity, but phosphotyrosine binding forms of PKM2 co-immunoprecipitated with pY15-containing Cdk1-cyclinB and enhanced formation of active pT161 Cdk1-cyclin B complexes. Moreover, exogenous expression of phosphotyrosine binding forms of PKM2 reversed the effects of PKM2 knock-down on G2-M arrest. We here show that PKM2 binds and stabilize otherwise transient pY15-containing Cdk1-cyclinB complexes that in turn facilitate Cdk1-cyclin B activation and entry of cells into mitosis. These results, therefore, establish metabolic enzyme PKM2 as a direct interactor and activator of Cdk1-cyclin B complex and thereby directly controls mitotic progression and the growth of brain tumor cells.publishedVersio

    A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays

    Full text link
    In this paper, a tunable plasmonic refractive index sensor with nanoring-strip graphene arrays is numerically investigated by the finite difference time domain (FDTD) method. The simulation results exhibit that by changing the sensing medium refractive index nmed of the structure, the sensing range of the system is large. By changing the doping level ng, we noticed that the transmission characteristics can be adjusted flexibly. The resonance wavelength remains entirely the same and the transmission dip enhancement over a big range of incidence angles [0,45] for both TM and TE polarizations, which indicates that the resonance of the graphene nanoring-strip arrays is insensitive to angle polarization. The above results are undoubtedly a new way to realize various tunable plasmon devices, and may have a great application prospect in biosensing, detection and imaging

    Dynamic Distribution Pruning for Efficient Network Architecture Search

    Full text link
    Network architectures obtained by Neural Architecture Search (NAS) have shown state-of-the-art performance in various computer vision tasks. Despite the exciting progress, the computational complexity of the forward-backward propagation and the search process makes it difficult to apply NAS in practice. In particular, most previous methods require thousands of GPU days for the search process to converge. In this paper, we propose a dynamic distribution pruning method towards extremely efficient NAS, which samples architectures from a joint categorical distribution. The search space is dynamically pruned every a few epochs to update this distribution, and the optimal neural architecture is obtained when there is only one structure remained. We conduct experiments on two widely-used datasets in NAS. On CIFAR-10, the optimal structure obtained by our method achieves the state-of-the-art 1.91.9\% test error, while the search process is more than 1,0001,000 times faster (only 1.51.5 GPU hours on a Tesla V100) than the state-of-the-art NAS algorithms. On ImageNet, our model achieves 75.2\% top-1 accuracy under the MobileNet settings, with a time cost of only 22 GPU days that is 100%100\% acceleration over the fastest NAS algorithm. The code is available at \url{ https://github.com/tanglang96/DDPNAS

    Effects of Montmorillonite on the Mineralization and Cementing Properties of Microbiologically Induced Calcium Carbonate

    Get PDF
    Carbonate mineralization microbe is a microorganism capable of decomposing the substrate in the metabolic process to produce the carbonate, which then forms calcium carbonate with calcium ions. By taking advantage of this process, contaminative uranium tailings can transform to solid cement, where calcium carbonate plays the role of a binder. In this paper, we have studied the morphology of mineralized crystals by controlling the mineralization time and adding different concentrations of montmorillonite (MMT). At the same time, we also studied the effect of carbonate mineralized cementation uranium tailings by controlling the amount of MMT. The results showed that MMT can regulate the crystal morphology of calcium carbonate. What is more, MMT can balance the acidity and ions in the uranium tailings; it also can reduce the toxicity of uranium ions on microorganisms. In addition, MMT filling in the gap between the uranium tailings made the cement body more stable. When the amount of MMT is 6%, the maximum strength of the cement body reached 2.18 MPa, which increased by 47.66% compared with that the sample without MMT. Therefore, it is reasonable and feasible to use the MMT to regulate the biocalcium carbonate cemented uranium tailings

    A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays

    Full text link
    In this paper, a tunable plasmonic refractive index sensor with nanoring-strip graphene arrays is numerically investigated by the finite difference time domain (FDTD) method. The simulation results exhibit that by changing the sensing medium refractive index nmed of the structure, the sensing range of the system is large. By changing the doping level ng, we noticed that the transmission characteristics can be adjusted flexibly. The resonance wavelength remains entirely the same and the transmission dip enhancement over a big range of incidence angles [0,45] for both TM and TE polarizations, which indicates that the resonance of the graphene nanoring-strip arrays is insensitive to angle polarization. The above results are undoubtedly a new way to realize various tunable plasmon devices, and may have a great application prospect in biosensing, detection and imaging
    corecore