25 research outputs found

    City of Ivanhoe Comprehensive Plan 2018-2038

    Get PDF
    the City of Ivanhoe is located in Tyler County, which is in southeastern Texas near the Louisiana border. The land is gently rolling, with an elevation ranging from 100 to 400 feet above sea level. Texas Target Communities developed this document in partnership with the City of Ivanhoe. In the summer of 2016, Tyler County and the City of Ivanhoe collaborated with Texas Target Communities to assess current community conditions and explore future development strategies. The project aimed to enhance community-wide discussion through a public participatory process, resulting in developing a comprehensive plan to help guide the future growth of the County and City. A representative task force of community members engaged in a participatory planning process, including visioning, goal setting, alternative scenario exploration, and strategies for implementation. Using courses on campus, TAMU urban planning students were exposed to the planning process and explored innovative ideas. The result of this collaboration is this document, which provides strategies for the community’s growth utilizing the natural resource and the assets of the City.The Ivanhoe Comprehensive Plan 2017-2037 provides guidance for the future development of the city. In the summer of 2016, Tyler County and the City of Ivanhoe collaborated with Texas Target Communities to assess current community conditions and explore future development strategies., which resulted in this comprehensive plan document.Texas Target Communitie

    Pathogenic Germline Variants in 10,389 Adult Cancers

    Get PDF
    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer. A pan-cancer analysis identifies hundreds of predisposing germline variants

    Research on the Internationalization Development and Cooperation Path of Higher Education Between Turkey and China

    No full text
    In recent years, with the irreversible trend of internationalization worldwide, the internationalization of higher education is a key direction of China’s education in the future. Given the current situation of political, economic, and social development in Balkan countries, Turkey strongly desires to develop its internationalization of higher education. This paper will explore the internationalization development status of higher education between Turkey and China, based on which their cooperation path of higher education is summarized

    Big Data Analytics in Intelligent Transportation Systems: A Survey

    No full text

    Hydrochemical characteristics and genesis analysis of typical aquifer system in karst critical zone of Central Yunnan Plateau

    No full text
    The study of hydrogeochemical processes in the karst critical zone (KCZ) is of great significance for the scientific understanding of their internal evolutionary environment and structural characteristics. Karst groundwater is the main information carrier after water-rock interactions. Quantitative analysis of its hydrochemical characteristics and causes is an effective means to reveal the medium environment and hydrodynamic conditions of the aquifer system in the KCZ. In this paper, three typical karst aquifer systems in the KCZ of the central Yunnan Plateau were taken as the research objects. Through field sampling and laboratory testing of karst springs exposed by different aquifer systems, mathematical statistics analysis, hydrochemical diagram, ion ratio coefficient and hydrogeochemical simulation were comprehensively used to deeply analyze the characteristics of hydrochemical components, genesis and aquifer medium of karst groundwater in each aquifer system; the internal relationship and law between the water cycle and hydrochemistry in the key belt were discussed. The results showed that: ①HCO3- and Ca2+ were the highest and most stable ion components in regional karst groundwater, and Mg2+ was the key factor controlling the alienation of hydrochemical types in each aquifer system; ②The rock weathering and mineral dissolution of carbonate rocks were the main causes of the chemical composition characteristics of karst water in each aquifer system, and karst groundwater dissolution on the aquifer of the Huaning aquifer system was still occurring. The alternation of cation adsorption and the weathering and dissolution of silicate rocks were the main sources of Na+ and K+ in regional karst groundwater; ③The development intensity of regional karst, the exposed condition of karst aquifers and the lithology and connectivity of aquifer media jointly shaped the groundwater chemical characteristics of different aquifer systems in the KCZ of the Central Yunnan Plateau

    Interactions between Graphene and Ionic Liquid Electrolyte in Supercapacitors

    Get PDF
    The graphene material prepared by the chemical reduction method usually has oxygenic functional groups in it and such functional groups often result in interactions between the graphene electrode and the electrolyte in supercapacitors. We have examined the existential form of interactions between graphene as the electrode and three kinds of ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMI-TFSI), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4), and 1-methyl-1-propylpiperidinium bis (trifluoromethyl sulfonyl) imide (MPPp-TFSI), as the electrolyte of a supercapacitor. Mass spectroscopy (MS) and Fourier transform infrared spectroscopy (FT-IR) analyses confirmed that the residual hydroxyl groups in graphene were transferred to EMI+ and TFSI lost oxygen atoms to graphene, while little reaction took place in BF4 or MPPp(+), during the process of charging. The chemical reactions are suggested to contribute to the device capacitance while it is also one of the reasons for the decreased electrochemical stability window. In this study the highest energy density achieved using the graphene electrode is 169 Wh kg (1) in MPPp-TFSI electrolyte charged to 4.4 V. (C) 2016 Elsevier Ltd. All rights reserved

    Big Data Analytics in Intelligent Transportation Systems: A Survey

    No full text
    Big data is becoming a research focus in intelligent transportation systems (ITS), which can be seen in many projects around the world. Intelligent transportation systems will produce a large amount of data. The produced big data will have profound impacts on the design and application of intelligent transportation systems, which makes ITS safer, more efficient, and profitable. Studying big data analytics in ITS is a flourishing field. This paper first reviews the history and characteristics of big data and intelligent transportation systems. The framework of conducting big data analytics in ITS is discussed next, where the data source and collection methods, data analytics methods and platforms, and big data analytics application categories are summarized. Several case studies of big data analytics applications in intelligent transportation systems, including road traffic accidents analysis, road traffic flow prediction, p

    Change Analysis of Karst Landforms, Hydrogeological Conditions and Effects of Tunnel Excavation on Groundwater Environment in Three Topography Grades in China

    No full text
    One-third of the Earth in China is formed by Karst topography, which exposes different Karst landforms in three topography grades from southeast to northwest, corresponding to below several hundred meters for the first grade, one to two thousand meters for the second grade, and more than 4000 m for the in Qinghai-Tibet Plateau. Through the hydrochemical and D-18O stable isotopes of 64 water samples collected along two railway lines and the topography fractal characteristics of three typical Karst areas in different topography grades, the changes in Karst development degree, changes in groundwater activities, and the influence of tunnel excavation effects on groundwater environment were analyzed. The results indicated that: (1) the Karst development degree and the influence of Karst tunnel excavation on the groundwater environment are somehow similar in the first and second grades, while there are significant differences between the slopes area from second to third grade and the third grade area. (2) In detail, the relatively weaker Karst development degree and flow seeping in the second grade relatively weaken the influences of tunnel excavation, including the distribution pattern of water resources, the groundwater flow field, and water circulation, while the tunnel elevation has little room to rise. (3) There are many large faults in the north-southward direction in the third topography grade, and the transportation lines in the eastern-western direction will inevitably encounter them. In the intersection area, the tunnel excavation has great effects on the groundwater environment. (4) The lighter hydrogen and oxygen isotopes are enriched in Karst water from the first grade to the third grade, indicating that the recharge source of Karst water presents obvious elevation effect

    Ionic liquids with reversible photo-induced conductivity regulation in aqueous solution

    No full text
    Abstract Stimulus-responsive ionic liquids have gained significant attention for their applications in various areas. Herein, three kinds of azobenzimidazole ionic liquids with reversible photo-induced conductivity regulation were designed and synthesized. The change of electrical conductivity under UV/visible light irradiation in aqueous solution was studied, and the effect of chemical structure and concentration of ionic liquids containing azobenzene to the regulation of photoresponse conductivity were discussed. The results showed that exposing the ionic liquid aqueous solution to ultraviolet light significantly increased its conductivity. Ionic liquids with longer alkyl chains exhibited an even greater increase in conductivity, up to 75.5%. Then under the irradiation of visible light, the electrical conductivity of the solution returned to its initial value. Further exploration of the mechanism of the reversible photo-induced conductivity regulation of azobenzene ionic liquids aqueous solution indicated that this may attributed to the formation/dissociation of ionic liquids aggregates in aqueous solution induced by the isomerization of azobenzene under UV/visible light irradiation and resulted the reversible conductivity regulation. This work provides a way for the molecular designing and performance regulation of photo-responsive ionic liquid and were expected to be applied in devices with photoconductive switching and micro photocontrol properties

    Microdeletion in distal PLP1 enhancers causes hereditary spastic paraplegia 2

    No full text
    Abstract Objectives Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disease caused by over 70 genes, with a significant number of patients still genetically unsolved. In this study, we recruited a suspected HSP family characterized by spasticity, developmental delay, ataxia and hypomyelination, and intended to reveal its molecular etiology by whole exome sequencing (WES) and long‐read sequencing (LRS) analyses. Methods WES was performed on 13 individuals of the family to identify the causative mutations, including analyses of SNVs (single‐nucleotide variants) and CNVs (copy number variants). Accurate circular consensus (CCS) long‐read sequencing (LRS) was used to verify the findings of CNV analysis from WES. Results SNVs analysis identified a missense variant c.195G>T (p.E65D) of MORF4L2 at Xq22.2 co‐segregating in this family from WES data. Further CNVs analysis revealed a microdeletion, which was adjacent to the MORF4L2 gene, also co‐segregating in this family. LRS verified this microdeletion and confirmed the deletion range (chrX: 103,690,507–103,715,018, hg38) with high resolution at nucleotide level accuracy. Interpretations In this study, we identified an Xq22.2 microdeletion (about 24.5 kb), which contains distal enhancers of the PLP1 gene, as a likely cause of SPG2 in this family. The lack of distal enhancers may result in transcriptional repression of PLP1 in oligodendrocytes, potentially affecting its role in the maintenance of myelin, and causing SPG2 phenotype. This study has highlighted the importance of noncoding genomic alterations in the genetic etiology of SPG2
    corecore