195 research outputs found

    Microwave-assisted non-thermal hemp degumming

    Get PDF
    The microwave-assisted non-thermal degumming of hemp fibre has been studied and then compared with the water bath heating under different time and temperature conditions. The results show that the residual gum content of the lean hemp using microwave-assisted heating method is lower than that obtained using water bath heating. The residual gum content gap between the two degumming processes increases first and then decreases as the heating time and temperature are increased. This proves the existence of non-thermal effects in microwave heating process besides the thermal effects in water bath heating. In addition, the structures of the lean hemp fibres obtained from these two methods are also studied by scanning electron microscopy and fourier transform infrared spectroscopy.

    Short-term application of diquafosol ophthalmic solution benefits children with dry eye wearing orthokeratology lens

    Get PDF
    PurposeThis aim of this study was to evaluate the effect of 3% Diquafosol Ophthalmic Solution (DQS) on children with dry eye from wearing overnight orthokeratology (OrthoK) lenses.MethodsMyopic children aged 8–18 years with dry eye syndrome were enrolled in this prospective observational study, and they were grouped according to their OrthoK treatment history for at least 1 year. All participants received DQS 4 times per day for 1 month. The following indicators were measured at baseline 1 month after treatment: the Dry Eye Questionnaire-5 (DEQ-5), non-invasive tear meniscus height (TMH), non-invasive tear film break-up time (first and average, NIBUT-F and NIBUT-A), meibomian gland score (MG score), conjunctival hyperemia redness score (R-scan), and blink pattern analysis.ResultsA total of 104 participants (189 eyes) including 40 OrthoK wearers (72 eyes) and 64 Orthok candidates (117 eyes) completed the study. Of all, after DQS treatment for 1 month, DEQ-5 scores reduced from 5.54 ± 3.25 to 3.85 ± 2.98 (t = −3.36, p = 0.00). TMH increased from 0.20 ± 0.05 mm to 0.21 ± 0.05 mm (t = 2.59, p = 0.01), NIBUT-F and NIBUT-A were prolonged from 6.67 ± 4.71 s to 10.32 ± 6.19 s and from 8.86 ± 5.25 s to 13.30 ± 6.03 s (all p = 0.00), respectively. R-scan decreased from 0.69 ± 0.28 to 0.50 ± 0.25 (t = −9.01, p = 0.00). Upper MG scores decreased from 1.04 ± 0.32 to 0.97 ± 0.36 (t = −2.14, p = 0.03). Lower MG scores, partial blink rate, partial blinks, and total blinks did not change significantly. Both break-up time (BUT) and R-scan improved significantly after DQS treatment for 1 month (all p = 0.00) in OrthoK candidates and OrthoK wearers. Among the OrthoK wearers, TMH and dry eye symptoms increased significantly (all p = 0.00) but did not increase in OrthoK candidates (p > 0.05). There were no adverse events related to DQS.ConclusionDiquafosol Ophthalmic Solution was effective for children wearing overnight orthokeratology in relieving dry eye symptoms and improving ocular surface parameters, which may help improve children's OrthoK wearing tolerance and compliance

    A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation

    Get PDF
    IntroductionPhosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis.MethodsTo investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis.ResultsThe approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis.DiscussionIn summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation

    Meta analysis of heavy metal and pesticide pollution status of nine medicinal and edible substances

    Get PDF
    ObjectiveTo evaluate the heavy metal and pesticide pollution status of nine medicinal and edible substances, including Eucommia ulmoides leaves, Codonopsis pilosula, Cistanche deserticola, Dendrobium candidum, Astragalus membranaceus, Panax quinquefolium, Gastrodia elata, Ganoderma lucidum, and Corni Fructus.MethodsPubMed, China National Knowledge Network (CNKI), VIP, and Wanfang databases were searched to obtain research literature published from 2000 to 2022 on heavy metals, pesticides, and environmental pollutants in nine medicinal and edible substances. The literature was screened according to the inclusion and exclusion criteria, and the included studies were analyzed and pooled into estimates using meta-analysis.ResultsA total of 106 studies encompassing seven heavy metals, including lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), chromium (Cr), copper (Cu), and nickel (Ni), and 42 pesticides, including organochlorine, pyrethroid, and organophosphorus, of nine types of medicinal and edible substances used as food collected from 23 provinces (municipalities) were comprehensively analyzed. The average heavy metal content in the medicinal and edible substances used as food was 0.22 mg/kg (95%CI: 0.13~0.39), and the average heavy metal content of Eucommia ulmoides leaves was the highest (2.80 mg/kg, 95%CI: 0.75~10.37), followed by Dendrobium candidum with an average value of 0.30 mg/kg (95%CI: 0.18~0.49). The average value of heavy metals in the other medicinal and edible substances was lower than 0.30 mg/kg. Among the seven heavy metals analyzed, the Cu exhibited the highest content, followed by Cd and Pb. Subgroup analysis showed that the contents of the seven heavy metals in medicinal and edible substances collected from different locations had high heterogeneity (P<0.05). The meta-analysis showed that heterogeneity existed in the mean values of 42 pesticides (P<0.05), and the total mean values of pentachloronitrobenzene, BHC and DDT in Dendrobium candidum, Panax quinquefolium, Cistanche deserticola, Astragalus membranaceus, and Gastrodia elata were the highest.ConclusionThere are differences in the categories and contamination levels of heavy metals and pesticides in medicinal and edible substances. Heavy metal pollution is related to the origin and type of medicinal and edible substances. Prohibited pesticides can be detected in certain medicinal and edible substances, and further traceability analyses of pollutants in medicinal and edible substances should be conducted. The supervision and monitoring of the production and processing of medicinal and edible substances should be strengthened

    Intraocular complement activation is related to retinal vascular and neuronal degeneration in myopic retinopathy

    Get PDF
    PurposeTo investigate the relationship between the intraocular levels of complement proteins and myopia-related retinal neuronal and vascular degeneration.MethodsAqueous humour from 147 myopic patients, including 60 low-myopia and 87 high-myopia were collected during Implantable Collamer Lens implantation surgery. All participants received comprehensive ophthalmic examinations, including logMAR best corrected visual acuity, axial length measurement, fundus photography and ocular B-scan ultrasonography. The myopic eyes were further classified into simple myopia (SM, n = 78), myopic posterior staphyloma (PS, n = 39) and PS with myopic chorioretinal atrophy (PS + CA, n = 30). Retinal thickness and vascular density in the macula (6 mm × 6 mm) and optic nerve head (4.5 mm × 4.5 mm) were measured using Optical Coherence Tomography (OCT) and OCT angiography (OCTA). The levels of complement proteins including C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5, C5a, CFD, MBL and CFI in the aqueous humour were measured using the Luminex Multiplexing system. The real-time RT-PCR was conducted to examine the expression of complement genes (C1q, C2, C3, C4, CFI and CFD) in the guinea pig model of long-term form deprivation-induced myopic retinal degeneration.ResultsOCTA showed that retinal neuronal thickness and vascular density in superficial and deep layers of the macular zone as well as vascular density in the optic nerve head were progressively decreased from SM to PS and PS + CA (p &lt; 0.05). The aqueous humour levels of C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5 and CFI were significantly higher in high-myopic eyes compared to those in low-myopic eyes. Further subgroup analysis revealed the highest levels of complement components/fragments in the PS + CA group. The intraocular levels of complement factors particularly C3b/iC3b and C4 were negatively correlated with macular zone deep layer retinal thickness and vascular density and optic nerve head vascular density. The expression of C2, C3 and C4 genes was significantly higher in guinea pig eyes with myopic retinal degeneration compared to control eyes.ConclusionsThe intraocular classical pathway and alternative pathway of the complement system are partially activated in pathological myopia. Their activation is related to the degeneration of retinal neurons and the vasculature in the macula and the vasculature in the optic nerve head

    A Glimpse of Streptococcal Toxic Shock Syndrome from Comparative Genomics of S. suis 2 Chinese Isolates

    Get PDF
    BACKGROUND: Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen, causing more than 200 cases of severe human infection worldwide, with the hallmarks of meningitis, septicemia, arthritis, etc. Very recently, SS2 has been recognized as an etiological agent for streptococcal toxic shock syndrome (STSS), which was originally associated with Streptococcus pyogenes (GAS) in Streptococci. However, the molecular mechanisms underlying STSS are poorly understood. METHODS AND FINDINGS: To elucidate the genetic determinants of STSS caused by SS2, whole genome sequencing of 3 different Chinese SS2 strains was undertaken. Comparative genomics accompanied by several lines of experiments, including experimental animal infection, PCR assay, and expression analysis, were utilized to further dissect a candidate pathogenicity island (PAI). Here we show, for the first time, a novel molecular insight into Chinese isolates of highly invasive SS2, which caused two large-scale human STSS outbreaks in China. A candidate PAI of ∼89 kb in length, which is designated 89K and specific for Chinese SS2 virulent isolates, was investigated at the genomic level. It shares the universal properties of PAIs such as distinct GC content, consistent with its pivotal role in STSS and high virulence. CONCLUSIONS: To our knowledge, this is the first PAI candidate from S. suis worldwide. Our finding thus sheds light on STSS triggered by SS2 at the genomic level, facilitates further understanding of its pathogenesis and points to directions of development on some effective strategies to combat highly pathogenic SS2 infections

    EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus

    Get PDF
    Erigeron breviscapus, a traditional Chinese medicinal plant, is enriched in flavonoids that are beneficial to human health. While we know that R2R3-MYB transcription factors (TFs) are crucial to flavonoid pathway, the transcriptional regulation of flavonoid biosynthesis in E. breviscapus has not been fully elucidated. Here, EbMYBP1, a R2R3-MYB transcription factor, was uncovered as a regulator involved in the regulation of flavonoid accumulation. Transcriptome and metabolome analysis revealed that a large group of genes related to flavonoid biosynthesis were significantly changed, accompanied by significantly increased concentrations of the flavonoid in EbMYBP1-OE transgenic tobacco compared with the wild-type (WT). In vitro and in vivo investigations showed that EbMYBP1 participated in flavonoid biosynthesis, acting as a nucleus-localized transcriptional activator and activating the transcription of flavonoid-associated genes like FLS, F3H, CHS, and CHI by directly binding to their promoters. Collectively, these new findings are advancing our understanding of the transcriptional regulation that modulates the flavonoid biosynthesis
    corecore