54,455 research outputs found
Parrondo's games with chaotic switching
This paper investigates the different effects of chaotic switching on
Parrondo's games, as compared to random and periodic switching. The rate of
winning of Parrondo's games with chaotic switching depends on coefficient(s)
defining the chaotic generator, initial conditions of the chaotic sequence and
the proportion of Game A played. Maximum rate of winning can be obtained with
all the above mentioned factors properly set, and this occurs when chaotic
switching approaches periodic behavior.Comment: 11 pages, 9 figure
Probing many-body localization in a disordered quantum magnet
Quantum states cohere and interfere. Quantum systems composed of many atoms
arranged imperfectly rarely display these properties. Here we demonstrate an
exception in a disordered quantum magnet that divides itself into nearly
isolated subsystems. We probe these coherent clusters of spins by driving the
system beyond its linear response regime at a single frequency and measuring
the resulting "hole" in the overall linear spectral response. The Fano shape of
the hole encodes the incoherent lifetime as well as coherent mixing of the
localized excitations. For the disordered Ising magnet,
, the quality factor for spectral holes
can be as high as 100,000. We tune the dynamics of the quantum degrees of
freedom by sweeping the Fano mixing parameter through zero via the
amplitude of the ac pump as well as a static external transverse field. The
zero-crossing of is associated with a dissipationless response at the drive
frequency, implying that the off-diagonal matrix element for the two-level
system also undergoes a zero-crossing. The identification of localized
two-level systems in a dense and disordered dipolar-coupled spin system
represents a solid state implementation of many-body localization, pushing the
search forward for qubits emerging from strongly-interacting, disordered,
many-body systems.Comment: 22 pages, 6 figure
Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field
We calculate the electronic states of
AlGaAs/GaAs/AlGaAs double heterojunctions subjected to
a magnetic field parallel to the quasi two-dimensional electron gas. We study
the energy dispersion curves, the density of states, the electron concentration
and the distribution of the electrons in the subbands. The parallel magnetic
field induces severe changes in the density of states, which are of crucial
importance for the explanation of the magnetoconductivity in these structures.
However, to our knowledge, there is no systematic study of the density of
states under these circumstances. We attempt a contribution in this direction.
For symmetric heterostructures, the depopulation of the higher subbands, the
transition from a single to a bilayer electron system and the domination of the
bulk Landau levels in the centre the wide quantum well, as the magnetic field
is continuously increased, are presented in the ``energy dispersion picture''
as well as in the ``electron concentration picture'' and in the ``density of
states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures
(three) embedde
Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation
BACKGROUND: X chromosome inactivation, the mechanism used by mammals to equalise dosage of X-linked genes in XX females relative to XY males, is triggered by chromosome-wide localisation of a cis-acting non-coding RNA, Xist. The mechanism of Xist RNA spreading and Xist-dependent silencing is poorly understood. A large body of evidence indicates that silencing is more efficient on the X chromosome than on autosomes, leading to the idea that the X chromosome has acquired sequences that facilitate propagation of silencing. LINE-1 (L1) repeats are relatively enriched on the X chromosome and have been proposed as candidates for these sequences. To determine the requirements for efficient silencing we have analysed the relationship of chromosome features, including L1 repeats, and the extent of silencing in cell lines carrying inducible Xist transgenes located on one of three different autosomes. RESULTS: Our results show that the organisation of the chromosome into large gene-rich and L1-rich domains is a key determinant of silencing efficiency. Specifically genes located in large gene-rich domains with low L1 density are relatively resistant to Xist-mediated silencing whereas genes located in gene-poor domains with high L1 density are silenced more efficiently. These effects are observed shortly after induction of Xist RNA expression, suggesting that chromosomal domain organisation influences establishment rather than long-term maintenance of silencing. The X chromosome and some autosomes have only small gene-rich L1-depleted domains and we suggest that this could confer the capacity for relatively efficient chromosome-wide silencing. CONCLUSIONS: This study provides insight into the requirements for efficient Xist mediated silencing and specifically identifies organisation of the chromosome into gene-rich L1-depleted and gene-poor L1-dense domains as a major influence on the ability of Xist-mediated silencing to be propagated in a continuous manner in cis
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences
- …